

MicroBooNE in 10 minutes

Natsumi Taniuchi on behalf of the MicroBooNE Collaboration

New Perspectives Conference 26th June 2023

DOE Report Number: FERMILAB-SLIDES-23-128

What is MicroBooNE?

- Part of the Fermilab Short-Baseline Neutrino (SBN) program
- 85-tonne Liquid Argon Time Projection Chamber (LArTPC) which ran 2015 2021

MicroBooNE LArTPC

- Uniform electric field
- Fine-grained wire readouts record ionisation charge
- PMTs collect scintillation light

What is MicroBooNE looking for?

- ✓ MiniBooNE (2002-2019) measured $\nu_{\mu} \rightarrow \nu_{e}$ & $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance
- ✓ It observed an excess of ν_e and $\overline{\nu_e}$ -like events at low energy with 4.8 σ significance: Low Energy Excess (LEE)
- ✓ Similar anomaly observed by LSND (1993-1998) from $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$
- As a mineral oil Cherenkov detector, it was unable to distinguish photons and electrons

We can separate e/γ with LArTPC!

MicroBooNE can distinguish e/γ by shower conversion distance and energy loss (dE/dx).

If the excess is **photons**... it could come from **mismodeled background** processes or BSM physics producing photons.

If the excess is electrons...

it could be **an oscillation involving additional neutrinos** or other exciting exotic physics.

MicroBooNE's Low Energy Excess Search

Results of Low Energy Excess Search

✓ **<u>Disfavor</u>** enhanced NC Δ → N γ rate prediction derived from MiniBooNE.

No evidence of excessive v_e or NC \triangle radiative decay to explain the MiniBooNE excess.

Sterile Neutrino Search

- MicroBooNE searched for oscillations caused by sterile neutrinos as source of the LEE
 - (3+1) model: 3 standard neutrinos + 1 additional sterile neutrino

- Data was consistent with a 3ν
 hypothesis within 1σ significance
- 95% CL limits exclude part of LSND allowed region

Cross Section Physics

- Understanding v interactions on Ar is crucial in reducing systematic uncertainties and improving background models for LArTPC experiments
- ✓ MicroBooNE enables high-statistics ν Ar cross-section measurements with BNB and NuMI

Inclusive cross sections:

Exclusive cross sections: v_{ρ} differential cross section with BNB

Rare process cross sections: Λ hyperon production with NuMI

Future Prospects

- First searches of the LEE found no evidence for excessive v_e or photons from NC ∆ radiative decay to explain the MiniBooNE/LSND excess
- A multitude of **further investigations are ongoing**:
 - ✓ Expanded scope of sterile neutrino oscillations
 - ✓ Extended photon-like event searches & exotic <u>e⁺e⁻ pair</u> search from BSM particles/processes
 → See Leon Tong's talk!
- Full dataset results are expected soon, which will approximately double the statistics

Credit: Matt Toups

- ✓ MicroBooNE is a LArTPC detector based at Fermilab and has completed its 5 years physics run.
- ✓ It has a wealth of different physics projects, too much to introduce in 10 minutes!
- ✓ Various techniques and tools have been developed to perform precision physics analyses in LArTPCs.
- ✓ MicroBooNE laid the groundwork for the other SBN LArTPC detectors and the future DUNE experiment.

Thank You!

MicroBooNE Collaboration Meeting, May 2023

bancaster hiversity

orizon 2020 European Union funding for Research & Innovation

Data taking from BNB and NuMI

UNIVERSITY OF CAMBRIDGE

Photon-like LEE Search

PhysRevLett.128.111801 (2022)

This analysis uses boosted decision trees (BDT)'s to target the key backgrounds to the NC $\Delta \rightarrow N\gamma$ signal.

Other BSM Models

• **Dark Tridents**: Beam produced dark matter scatters and produces an e+e- trident.

 Dark Neutrino Portal: Dark neutrinos decay to the dark gauge boson, which in turn gives rise to electronlike events.

• Decay of axion-like particles

MicroBooNE Next Steps

First series of results (1/2 the MicroBooNE data set)									
Reco topology Models	1e0p	1e1p	1eNp	1eX	e^+e^- + nothing	e⁺e⁻X	1γ0p	1γ1p	1γΧ
eV Sterile v Osc	~	~	~	~					
Mixed Osc + Sterile v	1 [7]	V [7]	V [7]	1 [7]			1 [7]		
Sterile v Decay	[13,14]	[13,14]	[13.14]	[13,14]			[4,11,12,15]	1 [4]	1 [4]
Dark Sector & Z' *	([2,3]				[2,3]	/ [2,3]	/ [1,2,3]	[1,2,3]	[1,2,3]
More complex higgs *					[10]	/ [10]	[6,10]	[6,10]	[6,10]
Axion-like particle *					/ [8]		[8]		
Res matter effects	V [5]	1 [5]	V [5]	1 [5]					
SM γ production							~	~	~

* Requires heavy sterile/other new particles also

More exploration of MiniBooNE excess

Credit: Mark Ross-Lonergan

