TAGGING NEUTRINO EVENTS WITH THE SBND'S PHOTON DETECTION SYSTEM

New Perspectives 23 06/26/23

Francisco Javier Nicolás Arnaldos

on behalf of the SBND collaboration

fjnicolas@ugr.es

MOTIVATION

- Liquid Argon Time Projection Chambers (LArTPCs): two complementary signals
 - Ionization charge provide:
 - Near photographic images of neutrino interactions + calorimetry
 - <u>Scintillation light</u>: mainly used for trigger purposes *thus far*

More details about the SBND detector in "SBND in 10 minutes" by H.Lay!

- LAr is a very prolific scintillator: a similar amount of light/ charge is produced at the operational electric fields
- New experiments like SBND are focusing on <u>harnessing the</u> potential of the light signals with its pioneering Photon <u>Detection System (PDS)</u>

My talk:

- 1. SBND PDS system design 4
- 2. Signal reconstruction
- 3. Applications

What's new?

SCINTILLATION LIGHT DETECTION

- ► Scintillation light emission: <u>128 nm</u> (VUV)
- Detection challenging: VUV light absorbed by most materials
- ► Common technique: <u>wavelength shifters</u> (WLS)
 - Re-emits photon in the visible spectrum, where most photon detectors (PD) are sensitive

PDS components (traditional approach)

Place WLS component in front of the PD (coating, plate covers...)

SCINTILLATION LIGHT DETECTION

The SBND PDS takes the wavelength shifting technique a step further!

PDS components (traditional approach)

PDS components (SBND approach)

Place WLS component in front of the optical detector (coating, plate covers...)

The full cathode will be acting as a WLS¹!

¹Foil-based method first use by <u>LArIAT experiment</u>

New Perspectives 23

Francisco Javier Nicolás Arnaldos

PASSIVE ELEMENTS: CATHODE FOILS

- Highly reflective foils installed in the cathode: recovers part of the photons
- Foils coated in Tetra-Phenyl-Butadiene (TPB) wavelength shifter:
 <u>2 light components in SBND:</u>
 - Primary light: VUV (standard)
 - ► Foil-reflected: visible (extra)
- ► **<u>Passive</u>** element in the system

ACTIVE ELEMENTS: PMTs & XARAPUCAs

Uncoated PMT

- 2 detection technologies:
 - Hamamatsu R5912-mod Photomultiplier tubes (PMTs): x120
- ► R&D XARAPUCAs: x196

- <u>High granularity</u> and detection area:
 ∼9.6 % anode coverage for PMTs
 - ~7.1 % anode coverage for XARAPUCAs
 - Able to <u>decouple the 2</u> <u>light components!</u>
 PMTs:
 - 96 coated (corners) in TPB: sensitive to VUV+Vis
 - 24 uncoated (central): sensitive only to Vis photons
 - XARAPUCAs:
 - ► 1/2 Vis sensitive
 - ► 1/2 VUV+Vis sensitive

XARAPUCAs

Coated PMTs

SBND PDS design: enhances the <u>light collection and its</u> <u>uniformity</u> thanks to

(i) the hight density of optical channels

(ii) the <u>TPB-coated reflective foils</u> installed in the cathode

OUTLINE

What's new?

- 1. Cathode foils: <u>two light</u> <u>components</u>
- 2. <u>High density</u> of PDs
- 3. Different flavors of PDs: able to <u>distinguish</u> between the <u>two</u> <u>wavelengths</u>

My talk:

- 1. SBND PDS system design
- 2. Signal reconstruction
- 3. Applications

LIGHT RECONSTRUCTION IN A NUTSHELL

► PDS <u>high granularity</u>: estimate the position in the anode plane (Y-Z)

WHAT ABOUT THE DRIFT?

- ► Reminder: <u>two light components, that can be decoupled by our PDs</u>
 - ► The closer to the cathode, the more visible light
 - ► Parameter that correlates with the drift position: ratio of light seen by uncoated and coated PMTs ($\equiv \eta$)
- Calibration curve accesible with data thanks to the Cosmic Ray Tagger (~2 cm position resolution)

POSITION RESOLUTION

- SBND PDS provides an independent 3D position reconstruction
- ► Expected resolution:
 - ► Drift: \sim 15 cm
 - ► Beam direction (Z): ~25 cm

TAGGING NEUTRINO EVENTS

Method for tagging neutrino events: can we correlate the **flash** t₀ with the BNB inner structure?

TAGGING NEUTRINO EVENTS

- We need to account for two additional time delays:
 - ► ToF_{ν}: <u>Neutrino time of flight</u> inside the detector (~17 ns)
 - ► ToF_{γ}: Scintillation <u>photons</u> <u>time of flight</u> (~15 ns)
- Both time of flights can be corrected using <u>only</u> the SBND PDS

ToF_ν: we can correct using the flash Z barycenter
 ToF_γ: we can correct using the drift coordinate estimation from the η parameter

TAGGING NEUTRINO EVENTS

- ν reconstructed times from the light signals:
 - ► t_0 from the flash of light
 - > ToF_{γ} and ToF_{ν} subtracted using the flash position

- SBND PDS focuses on pushing the LArTPC technology beyond its current limitations, maximizing the physics output and detector performance by an innovative design including:
 - A. <u>TPB-coated reflective foils</u> installed in the cathode
 - B. Having a large number of optical detectors, able to distinguish between the two light components
- ► This design aims to:
 - (I) Enhance the **light collection and its uniformity**
 - (II) Provide an independent 3D reconstruction, allowing SBND to retrieve the BNB inner structure using only scintillation light

Thank you!

Backup

CHARGE VS LIGHT

Charge (Q) vs Light (L)

Francisco Javier Nicolás Arnaldos