Regional Selection with Skipper CCDs for Astronomical Applications

SOAR Telescope

Rachel Hur Advisor: Alex Drlica-Wagner

Charged Coupled Device

Skipper Charged Coupled Device

 $\sigma_N =$

Output stage modified

Tiffenberg et al. 2017, Figure 3

Motivation for Skippers in Astronomy and Cosmology

- Observations of faint objects in the low-signal, low-background regime are currently limited by readout noise
 - Exoplanets of nearby stars (.1e- rms/pixel)
 - High cadence searches for short duration transient signals; ie. fast radio bursts
 - Multi-object spectroscopy of faint stars and galaxies (.5e- rms/pixel)

Motivation for Skippers in Astronomy and Cosmology

- Observations of faint objects in the low-signal, low-background regime are currently limited by readout noise
 - Exoplanets of nearby stars (.1e- rms/pixel)
 - High cadence searches for short duration transient signals; ie. fast radio bursts
 - Multi-object spectroscopy of faint stars and galaxies (.5e- rms/pixel)

As a first proof-of-concept, Skipper CCDs will be used at the SOAR Integral Field Spectrograph (SIFS) to observe spectra of strong gravitational lensing systems

Optimizing S/N with Skippers at SIFS

- Observation time = exposure time + readout time
- Readout time scales with number of samples
- Optimizing signal-to-noise ratio requires reduction in readout time

Regional selection

Regional Selection

Regional Selection

Predictive baseline model

- Transients are exponentially decaying over time
- Transients are independent bias shifts are simply additive
- Lookup tables for each noise source are generated from only one set of calibration images
- Predicts baseline shifts for any set of regions of interest

Preliminary Results

(1) Master bias image subtraction method

(2) Predictive exponential fitting model

Summary

- Skipper CCDs can significantly decrease readout noise levels by taking multiple, non-destructive samples per pixel
- Skipper CCDs could improve on current astronomical observations with conventional CCDs
- A Skipper CCD composed focal plane will be used at SIFS as a first, proof-of-concept application of Skippers to astronomy
- Regional selection can significantly reduce readout time and aid in optimizing signal-to-noise ratio
- Regional selection will be implemented for the first time in a real observing scenario at SIFS

$$\mathrm{S/N} = \frac{\mathrm{R_{src}t_{exp}}}{\Sigma_{tot}} = \frac{\mathrm{R_{src}t_{exp}}}{\sqrt{(\mathrm{R_{src}+R_{bkg}+R_{dark}})t_{exp} + \mathrm{N}\sigma_{read}^2}}.$$

Outline

- 1) What are CCDs?
- 2) How do Skipper CCDs reduce readout noise?
- 3) Benefits of regional selection
- 4) Mitigating transient noise effects in regional selection

Charged Coupled Device

Testing setup at Fermilab

Testing setup at Fermilab

Charged Coupled Device

Only output stage modified

Readout noise is **tunable**

 $t_{\rm obs} = t_{\rm exp} + (1 - f)t_{\rm read} + fN_{\rm samp}t_{\rm read}.$

Benefits of Regional Selection

Regional selection

Testing setup at Fermilab

Looking forward: Mitigating transient noise

Looking forward: Mitigating transient noise

Calibration images

N=10

Skipper CCDs

$$\mathrm{S/N} = \frac{\mathrm{R_{src}t_{exp}}}{\Sigma_{tot}}$$

$$\Sigma_{\rm tot} = \sqrt{(R_{\rm src} + R_{\rm bkg} + R_{\rm dark})t_{\rm exp} + N_{\rm samp}\sigma_N^2}$$

Integral Field Unit Datacube

Readout noise

- Electrical noise added to the CCD video signal
- Main source: CCD output amplifier
- Other sources: voltage biases and clock signals used for charge collection and transfer

Cosmic rays!

