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Why Mess With Perfection?

. Trained kernel convolutions are the back-bone of most modern
neural networks — ruling in image based tasks

. Require large inefficient blocks to encode spatial data

Trained kernels convolve over inputs to produce large blocks in the
model latent space, and explode the size of the model
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Wavelets and You

e \Wavelets commonly used in signal
decomposition tasks (audio, image) :
o Consider them a generalization of ost
a fourier transform "
e Specific operation, convoluted with the '
input, to produce an encoded output.
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Example Wavelet - a continuous “Mexican Hat”



Further Background with Discrete \Wavelets

. Mathematical operation that captures
conjugate data — sensitive to both

1

position and size
. Can encode losslessly; and without
increasing the size of the data vector
. Composition of a “smoothing” (¢) and
“differencing” () wavelet
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Haar Wavelet
Source: https://wavelets.pybytes.com/wavelet/haar/
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Using Multi-Resolution Dec

PPrLT LT

. Apply wavelets in sequence to decompose the
image at multiple levels
. Further decompositions produce a smaller
image with less detalil
. Higher L — Less detail
. Use a different sign of w2 to capture vertical,
horizontal, diagonal signals
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Equation for a Wavelet (W) for direction (a) at level (I+1) over signal Decomposition using JPG2000, a form of MRD
(S). The smoothing wavelet (¢) is applied | times to the signal. (Source: https://en.wikipedia.org/wiki/Wavelet_transform)
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Introducing MicroWav

3 x N . Utilize the multiple ‘levels’ of
the MRD using a Haar wavelet

. Introduce a layer with a 3 tailed
output (vertical, horizontal,
diagonical)

. Learns the features of the 3
decompositional features
independently
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Stacked MicroWavs - WavPool
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Why WavPool Works

Wavelets give largely sparse
representation of signals

. Easier signal to learn

Each layer has access to spacial and size
information

The transform decomposes images to
smaller inputs — The network needs less
dense nodes to encode them

The wavelet-dense calculation is less
computational intensive than a 3D
convolutional block (O(n+3n3) vs
(O(minmoutn4))




Comparisons
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Code

GitHub -
https://github.com/deepskies/Deep\WavNN

PyPi - https://pypi.org/project/wavpool/



https://arxiv.org/abs/2306.08734
https://github.com/deepskies/DeepWavNN
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