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Why Mess With Perfection?

● Trained kernel convolutions are the back-bone of most modern 
neural networks – ruling in image based tasks 

● Require large inefficient blocks to encode spatial data 
● Trained kernels convolve over inputs to produce large blocks in the 

model latent space, and explode the size of the model

VGG-19, 
containing 138 million 
parameters for a 
224x224 image 
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● Wavelets commonly used in signal 
decomposition tasks (audio, image)

○ Consider them a generalization of 
a fourier transform

● Specific operation, convoluted with the 
input, to produce an encoded output.

Wavelets and You

Example Wavelet - a continuous  “Mexican Hat”
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Further Background with Discrete Wavelets

● Mathematical operation that captures 
conjugate data – sensitive to both 
position and size 

● Can encode losslessly; and without 
increasing the size of the data vector

● Composition of a “smoothing” (φ) and 
“differencing” (ᴪ) wavelet

Haar Wavelet 
Source: https://wavelets.pybytes.com/wavelet/haar/
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Using Multi-Resolution Decomposition

● Apply wavelets in sequence to decompose the 
image at multiple levels
● Further decompositions produce a smaller 

image with less detail
● Higher L → Less detail

● Use a different sign of ᴪa to capture vertical, 
horizontal, diagonal signals

Decomposition using JPG2000, a form of MRD 
(Source: https://en.wikipedia.org/wiki/Wavelet_transform)
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Equation for a Wavelet (W) for direction (a) at level (l+1) over signal 
(S). The smoothing wavelet (φ) is applied l times to the signal. 



Introducing MicroWav

● Utilize the multiple ‘levels’ of 
the MRD using a Haar wavelet

● Introduce a layer with a 3 tailed 
output (vertical, horizontal, 
diagonical) 

● Learns the features of the 3 
decompositional features 
independently
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Stacked MicroWavs - WavPool
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Why WavPool Works

● Wavelets give largely sparse 
representation of signals 
● Easier signal to learn 

● Each layer has access to spacial and size 
information

● The transform decomposes images to 
smaller inputs – The network needs less 
dense nodes to encode them 

● The wavelet-dense calculation is less 
computational intensive than a 3D 
convolutional block (O(n+3n3) vs 
(O(minmoutn

4))
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Comparisons
● Trained networks of 

comparable size and 
complexity to the 
WavPool block on 
benchmark data 

● WavPool produces 
more consistent 
solutions  

● Quality far above a 
comparable MLP, with 
fewer parameters
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● Paper - https://arxiv.org/abs/2306.08734 
● Code 

● GitHub - 
https://github.com/deepskies/DeepWavNN 

● PyPi - https://pypi.org/project/wavpool/
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