

Overview of proposed ACE at Fermilab

Nhan Tran with input from ACE Science Workshop committee, PIU-CDG team PAC Meeting, June 2023 June 7, 2023

Outline

A brief timeline

- Booster Replacement studies and report, PIU-CDG report
- ACE Executive Summary
- Fermilab accelerator complex & ACE (Accelerator Complex Evolution)
 - MI Cycle Time & Booster replacement options
- ACE Science Workshop and mid- to long-term planning process

"The PAC will be asked to review the process for community engagement, identification of the science goals, development of alternative concepts and functional requirements."

Booster Replacement studies and report

- Phase 1, previous PAC presentations:
 - July 2020: First report by Roni on status of Booster Replacement, including first workshop
 - December 2020: Report by Roni Harnik and Mike Syphers on progress
 - June 2021: Luciano Ristori report White paper released; path to 2.4 MW for DUNE with Booster Replacement; options for broader physics program
 - PAC recommends formation of BR-CDG (Booster Replacement Central Design Group)
- Phase 2:
 - White papers and presentations at Snowmass 2022
 - PIU-CDG formed (was BR-CDG) Proton Intensity Upgrade Central Design Group
 - Chaired by Steve Brice and Brenna Flaugher

Since June 2021 PAC meeting

- What has changed along the way?
 - Muon collider interest has increased through Snowmass process
 - PIU-CDG study determined faster path to > 2MW to DUNE before Booster Replacement
 - Led to the broader Accelerator Complex Evolution (ACE) plan includes the MI fast ramp upgrade + Booster Replacement
- ACE overview
 - Part 1, ACE-MIT: Reduce Main Injector cycle time + Target R&D to get to > 2 MW
 - Part 2, ACE-BR: Booster Replacement
 - Necessary for long-term facility reliability (Booster is 50 years old)
 - Configurations for Booster Replacement (Linac or RCS)

Status

TM-2754-AD-APC-PIP2-TD

An Upgrade Path for the Fermilab Accelerator Complex*

R. Ainsworth, J. Dey, J. Eldred, R. Harnik, J. Jarvis, D.E. Johnson, I. Kourbanis,
D. Neuffer, E. Pozdeyev, M.J. Syphers,[†] A. Valishev, V.P. Yakovlev, and R. Zwaska Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA (Dated: May 19, 2021)

FERMILAB-FN-1145, LA-UR-22-21987

Physics Opportunities for the Fermilab Booster Replacement

John Arrington,¹ Joshua Barrow,^{2,3} Brian Batell,⁴ Robert Bernstein,⁵ Nikita Blinov,⁶ S.
J. Brice,⁵ Ray Culbertson,⁵ Patrick deNiverville,⁷ Vito Di Benedetto,⁵ Jeff Eldred,⁵
Angela Fava,⁵ Laura Fields,⁸ Alex Friedland,⁹ Andrei Gaponenko,⁵ Corrado Gatto,^{10,11}
Stefania Gori,¹² Roni Harnik,^{5,*} Richard J. Hill,^{5,13} Daniel M. Kaplan,¹⁴ Kevin J.
Kelly,^{5,15} Mandy Kiburg,⁵ Tom Kobilarcik,⁵ Gordan Krnjaic,⁵ Gabriel Lee,^{16,17,18} B.
R. Littlejohn,¹⁴ W. C. Louis,⁷ Pedro Machado,⁵ Anna Mazzacane,⁵ Petra Merkel,⁵
William M. Morse,¹⁹ David Neuffer,⁵ Evan Niner,⁵ Zarko Pavlovic,⁵ William Pellico,⁵
Ryan Plestid,^{5,13} Maxim Pospelov,²⁰ Eric Prebys,²¹ Yannis K. Semertzidis,^{22,23} M. H.
Shaevitz,²⁴ P. Snopok,¹⁴ M.J. Syphers,²⁵ Rex Tayloe,²⁶ R. T. Thornton,⁷ Oleksandr
Tomalak,^{5,7,13} M. Toups,⁵ Nhan Tran,⁵ Yu-Dai Tsai,^{5,27} Richard Van de Water,⁷
Katsuya Yonehara,⁵ Jacob Zettlemoyer,⁵ Yi-Ming Zhong,²⁸ and Robert Zwaska⁵

https://arxiv.org/abs/2106.02133 https://arxiv.org/abs/2203.03925 + many supplementary white papers

Report from the Fermilab Proton Intensity Upgrade Central Design Group

Robert Ainsworth, Giorgio Apollinari, Tug T. Arkan, Sergey Belomestnykh, Pushpalatha C. Bhat, S.J. Brice, Brian Chase, Mary E. Convery, Steven J. Dixon, Jeff Eldred, Grigory Eremeev, Brenna Flaugher, Jonathan D. Jarvis, Sergo Jiindariani, David Johnson, Jonathan Lewis, Richard Marcum, Sergei Nagaitsev, David Neuffer, Donato Passarelli, Frederique Pellemoine, William A. Pellico, Sam Posen, Eduard Pozdeyev, Alexander Romanenko, Arun Saini, Kiyomi Seiya, Vladimir Shiltsev, Nikolay Solyak, James M. Steimel, Diktys Stratakis, Alexander A. Valishev, Mayling L. Wong-Squires, Slava Yakovlev, Katsuya Yonehara, Robert Zwaska

Fermi National Accelerator Laboratory

May 31, 2023

Posted on ACE Science Workshop agenda

‡ Fermilab

Outcomes and Physics Themes

FERMILAB-FN-1145, LA-UR-22-21987

Physics Opportunities for the Fermilab Booster Replacement

Experiment	Dark Sectors	V Physics	CLFV	Precision tests	R&D
Lepton flavor violation: µ-to-e conversion					
Lepton flavor violation: µ decay					
PIP2-BD: ~GeV Proton beam dump					
SBN-BD: ~10 GeV Proton beam dump					
High energy proton fixed target					
Electron missing momentum					
Nucleon form factor w/ lepton scattering					
Electron beam dumps					
Muon Missing Momentum					
Muon beam dump					
Physics with muonium					
Muon collider R&D and neutrino factory					
Rare decays of light mesons					
Ultra-cold neutrons					
Proton storage ring for EDM and axions					
Tau neutrinos					
Proton irradiation facility					
Test-beam facility					

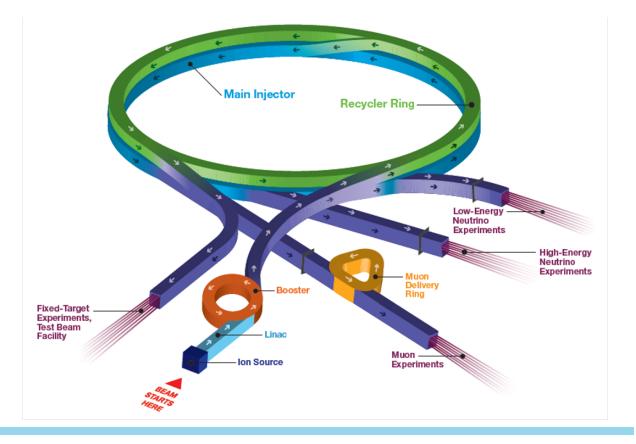
Physics themes*: 1.1 Dark sectors 1.2 Muon-based searches 1.3 Muon collider R&D

n.b. report primary goal on DUNE 2.4 MW target

*includes additional physics ideas

Status and summary

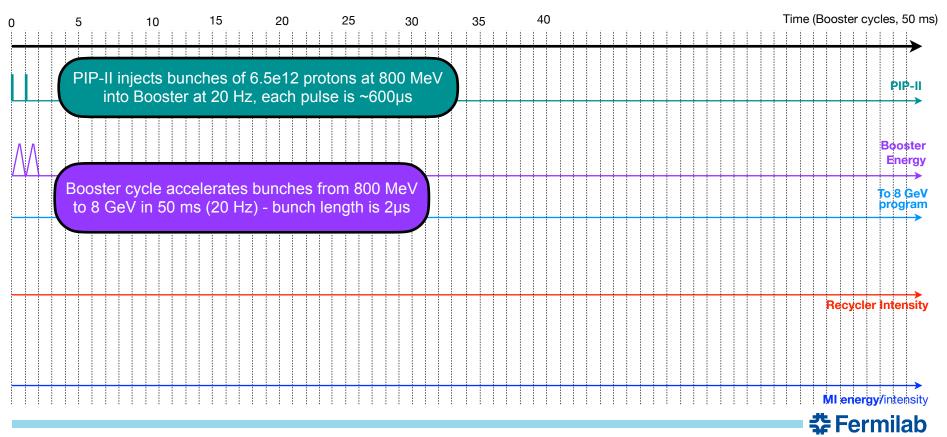
- In light of PIU-CDG findings and Snowmass community study...
 - Step back and re-evaluate ACE Science program and design
 - Assemble community input and understand physics thrust complementarity
- Next steps:
 - ACE Science Workshop next week (June 14-15)
 - https://indico.fnal.gov/event/59663/
 - First in a series of workshops to co-design physics case and technical design
 - Accelerator Design workshop planned for mid-July
 - Establish ACE Steering Committee to continue development of ACE towards CD-0 in ~2 year timescale



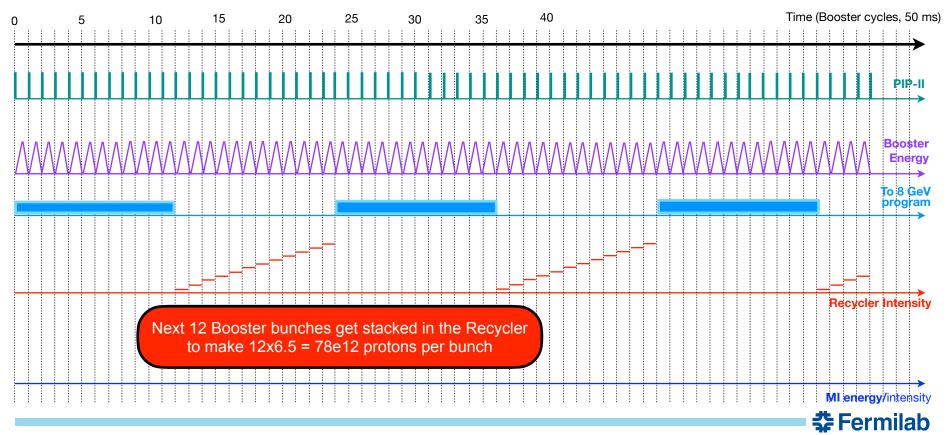
Outline

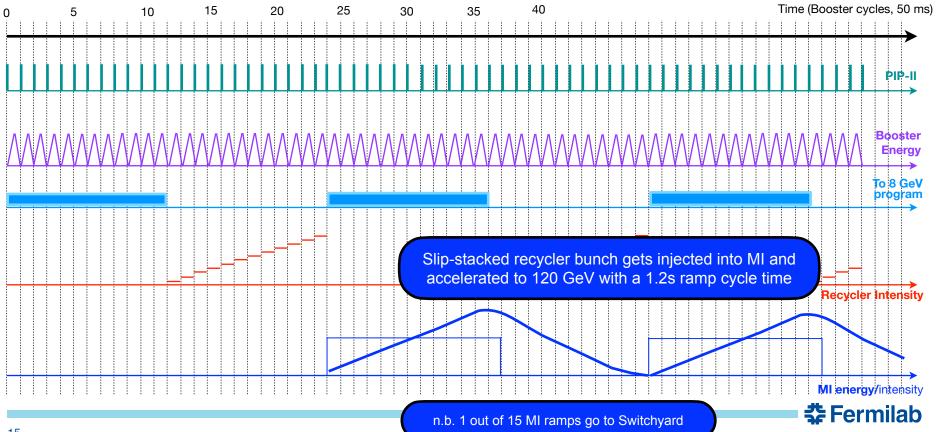
- A brief timeline
 - Booster Replacement studies and report, PIU-CDG report
 - ACE Executive Summary
- Fermilab accelerator complex & ACE (Accelerator Complex Evolution)
 - MI Ramp Time & Booster replacement options
- ACE Science Workshop and mid- to long-term coordination

The Fermilab Accelerator Complex

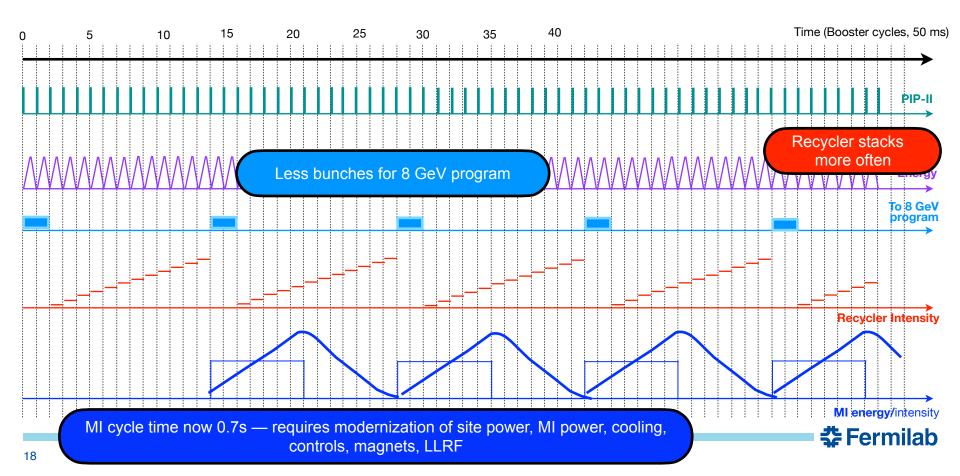


Scenario	Present	PIP-II
MI 120 GeV ramp time (s)	1.333	1.2
Booster Intensity (10 ¹²)	4.5	6.5
Booster ramp rate (Hz)	15	20
Number of batches	12	12
MI power at 120 GeV (MW)	0.865	1.25
Booster cycles for 8 GeV	8	12
Available 8 GeV power (kW)	29	83

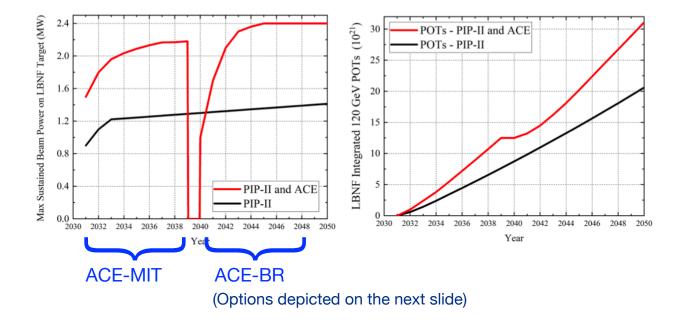



												Office	e of ti	CRC	D January 2	2022
			DRAFT LONG-RANGE PLAN													_
		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	F١	29	FY30	
LBNF /	SANFORD				DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	D١	NE	DUNE	
PIP II	FNAL				LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBN	F	LBNF	
NuMI	мі	IINERv	IINERv	DPEI	OPEN	2x2	2x 2	2x2	2x2	2x2				500	e Note 4	1
NUIVII	IVII	NOvA	NOvA	NOv/	NOvA	NOvA	NOvA	NOvA	NOvA	NOvA				300	Note 4	\mathbf{h}
		ιBooN	ιBooN	Bool	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN			0	PEN	OPEN	ľ
BNB	В	CARU:	CARU:	: <mark>ARL</mark>	CARU:	CARU:	CARU:	CARU:	CARU:	ICARUS		LONG		PEN	OPEN	
		SBND	SBND	<mark>BNI</mark>	SBND	SBND	SBND	SBND	SBND	SBND	11	JTDOWN	c	PEN	OPEN	
Muon	Complex	g-2	g-2	g-2	g-2	g-2	g-2								\sim	
wiuon	on Complex	Mu2e	Mu2e	<mark>/lu2</mark> /	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e			Ν	J2e	Mu2e	μ
	MT	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF			F	ΒF	FTBF	
SY 120	МС	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF			ľ	BF	FTBF	l_n
	NM4	OPEN	<mark>SpinQ</mark>	i <mark>pin(</mark>	SpinQ	<mark>Spin</mark> Q	SpinQ	SpinQ	OPEN	DPEI			C	EN	OPEN	р
LINAC	MTA				ITA	ITA	ITA	ITA	ITA	ITA						
		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	F١	9	FY30	
Construction / commissioning Run Subject to further revie									c N	SI	nutd	wn		-		
		C C	apability	ended	\square	Capab	oility una	vailable								
NOTES																

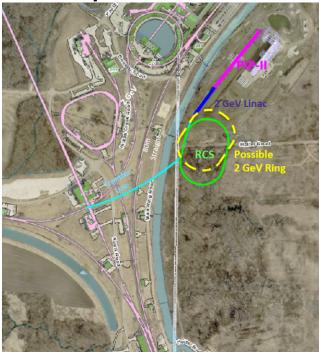
0	5	10	15	20 25	30 35	40	Time (Booster cycles, 50 ms)
							PIP-II
Λ		ΛΛΛΛΛ		///////////////////////////////////////			A A A A A A A A A A A A A A A A A A A
							To 8 GeV program
	(F		oster bunches	go to 8 GeV pro	ogram		
							Recycler Intensity
							MI energy/intensity
							🗕 🛟 Fermilab

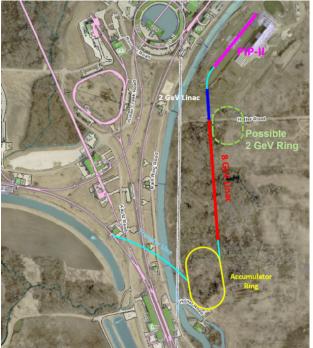

Main Injector ramp time

		PIP-II Booster Intensity				
Scenario	Present	PIP-II	Α	В		
MI 120 GeV ramp time (s)	1.333	1.2	0.9	0.7		
Booster intensity (10 ¹²)	4.5		6.5			
Booster ramp rate (Hz)	15	20				
Number of batches	12		12			
MI power at 120 GeV (MW)	0.865	1.25	1.666	2.142		
Booster cycles for 8 GeV	8	12 6		2		
Available 8 GeV power (kW)	29	83	56	24		


Accelerator Timeline - Main Injector Ramp Time (e.g. 1.2s)

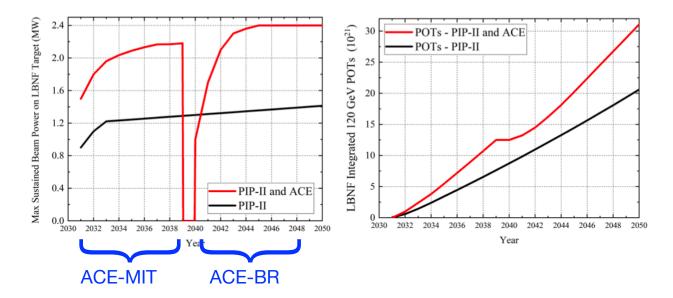
Accelerator Timeline - Main Injector Ramp Time (e.g. 0.7s)


DUNE plan


BR options: 800 MeV to 8 GeV

3 RCS options

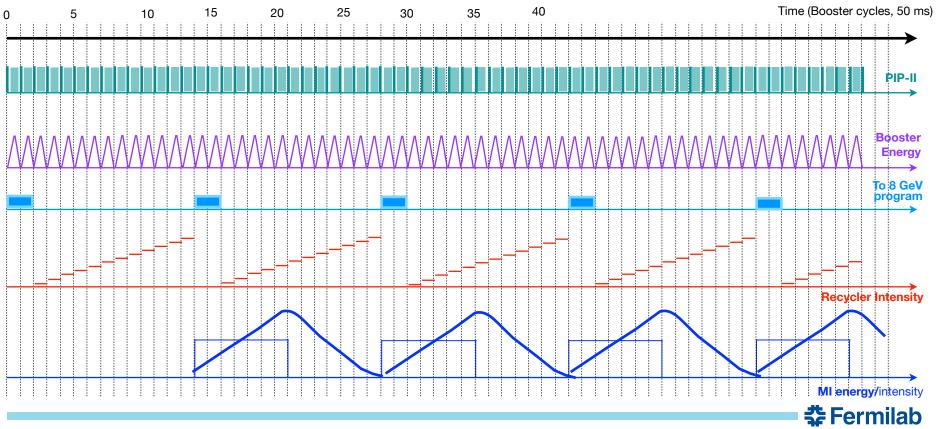
See backup for more details


3 Linac options

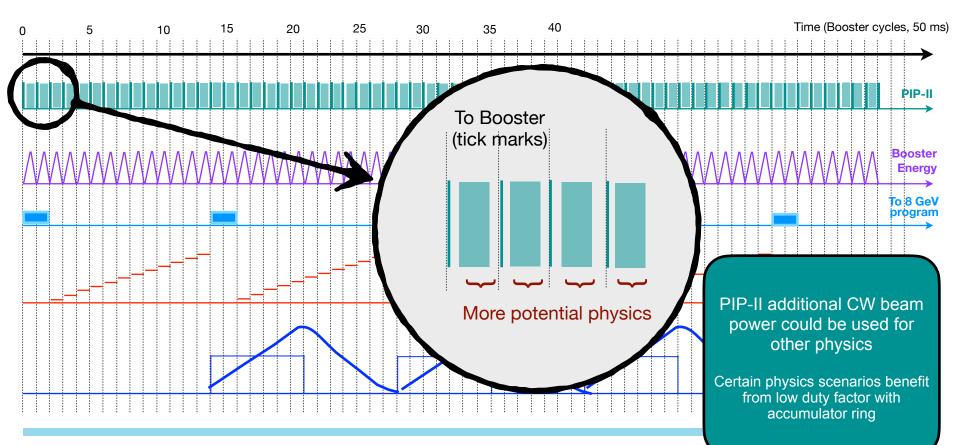
** Estimate cost/schedule/ risk of basic *elements* of the accelerator (e.g. PIP-II upgrade to 2 GeV, target station, etc) in a large spreadsheet

Physics Spigots

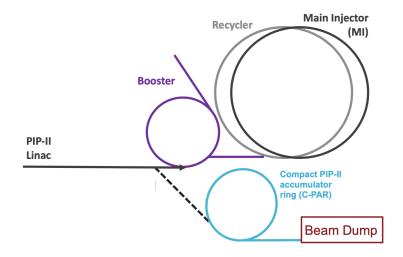
During ACE-MIT period:

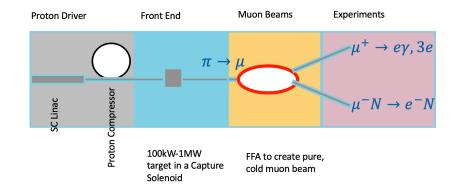

- significant beam available at 0.8 GeV,
- less so at 8 GeV (due to MI cycle time),
- 120 GeV slow extraction program could see more beam power

During ACE-BR period,


- significant beam available at 0.8-2 GeV,
- Potential for much more beam for 8 GeV program,
- 120 GeV slow extraction program even more (?)

Accelerator Timeline - spigots from 0.8 - 2 GeV


Accelerator Timeline - spigots from 0.8 - 2 GeV



E.g. Physics from 0.8-2 GeV

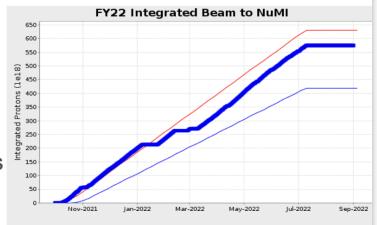
Dark Sector Beam Dumps

See more, e.g. at "Physics Opportunities at Beam Dump Facility in PIP-II and Beyond" <u>https://indico.fnal.gov/event/59430/</u>

Advanced Muon Facility

See more, e.g. at "Workshop on a future muon program at Fermilab" <u>https://indico.fnal.gov/event/57834/</u>

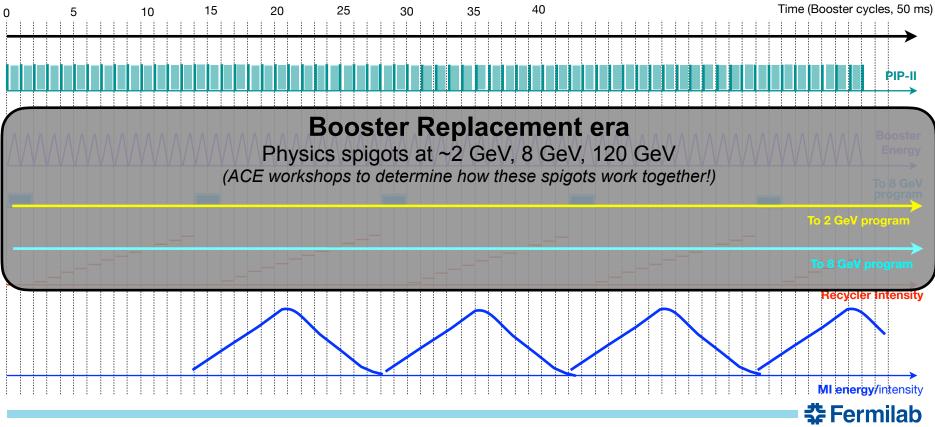
Booster Replacement options w.r.t. DUNE


			PIP-II Booster		Веу	ster		
Scenario	Present	PIP-II	Α	В	С	D	E	units
MI 120 GeV ramp rate	1.333	1.2	0.9	0.7	1.2	0.9	0.7	S
Booster intensity	4.5		6.5			10		10 ¹² p
Booster ramp rate	15		20			20		Hz
Number of batches	12		12		12	12	9	
MI power	0.865	1.25	1.666	2.142	1.922	2.563	2.472	MW
Cycles for 8 GeV	6	12	6	2	12	6	5	
Available 8 GeV power	29	83	56	24	128	85	92	kW

n.b. a list of some of many potential scenarios!

Improving reliability of the complex

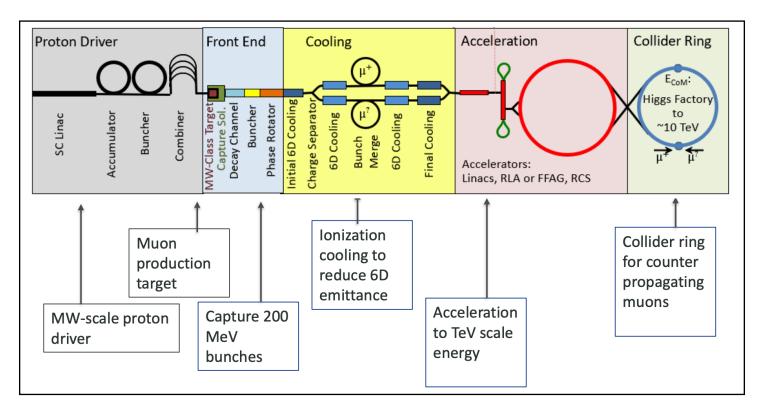
- Maximize beam power
 - Minimize beam loss
- Maximize uptime during running periods
 - High reliability (replace aging equipment)
 - Ability to rapidly repair equipment that breaks
- Maximize length of running periods each year
 - Minimize duration of annual shutdown for maintenance
- ACE will
 - Invest in reliability, availability and stability
 - Reduce shutdown duration, improve work planning


Fiscal Year 22 Integrated Beam to NuMI — Design — Base

Overall FY22 efficiency 41%, DUNE/PIP-II goal 57%

Capability, Capacity, Reliability

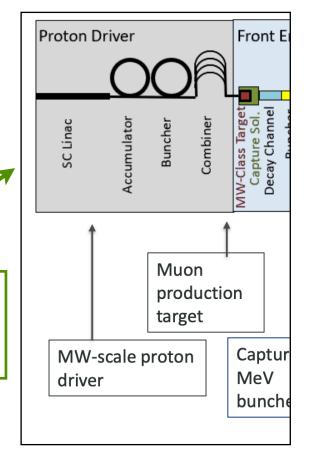
Fermilab


Accelerator Timeline - ACE-BR era

Example (non-comprehensive) list of physics

	Experiment		Uses existing or new	Spigot		
Experiment	type	Energy [GeV]	Energy [GeV] Power [kW] Time Structure		beamline?	
Proton Storage Ring: EDM and Axion Searches	Precision tests Dark Matter	0.232	1e11 polarized protons per fill	Fill the ring every 1000s	new	SOB
Physics with Muonium	Precision tests	0.8	1e(13+/-1) POT per second	CW	new	SOB
REDTOP Run I	Precision tests	1.8 - 2.2	0.03-0.05	slow extraction	Muon Campus	SOE
REDTOP Run II	Precision tests	0.8 - 0.92	200	CW,	new	S0A, S0B
REDTOP Run III	Precision tests	1.7	>1,000	CW,	new	S1
Ultra-cold Neutron Source for Fundamental Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Precision tests	0.8-2	1,000	quasi-continuous	new	SOA
CLFV with Muon Decays	CLFV	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	new	SOB
Mu2e II	CLFV	1 to 3	100	pulse width 10s of ns or better separated by 200 to 2000 ns. Flexible time structure and minimal pulse-to-pulse variation	new	S0A, S1
Fixed Target Searches for new physics with O(1 GeV) Proton Beam Dump	Dark Sector, Neutrino	0.8 to 1.5 GeV	100 or more	<o(1 <o(30="" for="" for<br="" measurements,="" micro="" neutrino="" ns)="" pulse="" s)="" width="">dark matter searches, 10^{-5} or better duty factor</o(1>	new	S0C, S2
PRISM-like Charged Lepton Flavor Violation	CLFV	1 -3 GeV	up to 2 MW	15ns pulses at a rep rate of about 1 kHz	new	S0C, S2
Proton Irradiation Facility	R&D	Energy is not very important	1e18 protons in a few hours	Pulsed beam (duty factor not specified)	new	SOB
SBN	Neutrino	8	32	20Hz	BNB	S0D & S3
Mu2e	CLFV	8	8	<10^{-10} extinction	Muon Campus	SOE
Fixed Target Searches for new physics with O(10 GeV) Proton Beam Dump	Dark Sector, Neutrino	8	up to 115	Beam spills less than a few microsec with separation between spills greater than 50 microsec	BNB	S0D & S3
Muon beam dump	Dark Sector	8 (producing 3 GeV muons)	3e14 muons in total on target for the whole run	cw	Muon Campus	SOE
Muon Collider R&D	R&D	8 - 16GeV	4e13 to 1.2e14 protons per bunch	5 - 20 Hz rep rate and bunch length 1-3 ns	new	S3
Muon Missing Momentum	Dark Sector	few 10s of GeV	10^{10} muons per experimental runtime	Pulsed beam (duty factor not specified)	new	SOF
High Energy Proton Fixed Target	Dark Sector, Neutrino	O(100 GeV)		CW via resonant extraction. "IF we could up the duty factor that woul dbe even better"(?)	Switchyard or new	SOF
Test-Beam Facility	R&D	120, lower energies would also be beneficial	10 to 100 kHz on the testing apparatus	Pulsed beam (duty factor not specified)	Switchyard or new	SOF
Tau Neutrinos	Neutrino	120	1200 or higher	MI time structure	LBNF	LBNF

Muon Collider



Muon Collider Proton Driver: 8 GeV program

ACE-BR scenarios considered do not exactly map to MuC scenarios but they are not that far off.

See the PIU-CDG report for more detailed scenarios (not a complete list)

Parameter	PIU scenarios	MuC-PD scenarios
Energy	8 GeV	8-16 GeV
Rep. rate	10-20 Hz	5-20 Hz
Avg. beam power	0.3-1.6 MW	1-4 MW
Proton structure	25-40 e12 over 2 μ s ring	40-120 e12 in four 1-3 ns bunches

Outline

- A brief timeline
 - Booster Replacement studies and report, PIU-CDG report
 - ACE Executive Summary
- Fermilab accelerator complex & ACE (Accelerator Complex Evolution)
 - MI Cycle Time & Booster replacement options
- ACE Science Workshop and mid- to long-term coordination

ACE Science Workshop

- https://indico.fnal.gov/event/59663/
- First in a series of workshops to co-design physics case and technical design
 - Invite as much community input as possible many community speakers
 - Involve early career folks as much as possible
- Organizers experts across neutrino, collider, CLFV, dark sectors, accelerators

S. Gori (Co-chair)

K. DiPetrillo B. Echenard

J. Eldred

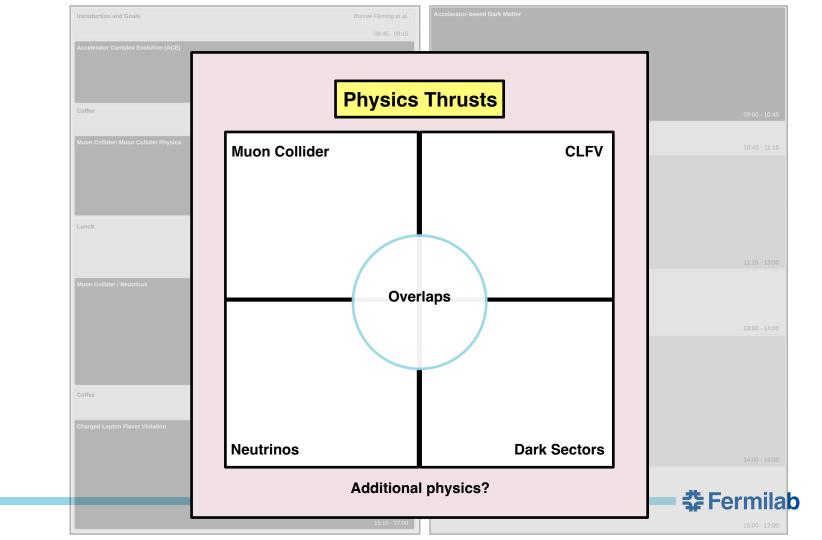
R. Harnik

M. Toups

Introduction and Goals	Bonnie Fleming et al.	Accelerator-based Dark Matter
	08:45 - 09:15	
Accelerator Complex Evolution (ACE)		
	09:15 - 10:15	
Coffee		
	10:15 - 10:45	Coffee
Muon Collider: Muon Collider Physics		
		Short remarks & Synergies intro
	10:45 - 12:02	
Lunch		
	12:05 - 13:00	Lunch
Muon Collider / Neutrinos		
		Synergies: Parallel discussion
		Synergies, r attaller discussion
	13:00 - 14:43	
Coffee		
	14:45 - 15:15	
Charged Lepton Flavor Violation		
		Summaries of parallels
	15:15 - 17:00	

09:00 - 10:45

10:45 - 11:15


11:15 - 13:00

13:00 - 14:00

14:00 - 16:00

16:00 - 17:00

O

		Accelerator-based Dark Matter
ntroduction and Goals	Bonnie Fleming et al.	Accelerator-based Dark Matter
	08:45 - 09:15	
ccelerator Complex Evolution (ACE)		
coffee		
		09:00 - 10:45
	10:15 - 10:45	Coffee
		10:45 - 11:15
		Short remarks & Synergies intro
		Short telliario a Synergies inte
		T
unch		
	12:05 - 13:00	11:15 - 13:00
luon Collider / Neutrinos	12.00 - 10.00	Lunch
		Chart remarks acceler to collect or
		Short remarks session to collect or
		highlight now ideas
		highlight new ideas
offee		
onee		
	14:45 - 15:15	
		14:00 - 16:00
		14:00 - 16:00 Summaries of parallels
		Summaries of parallels
		Summaries of parallels
		Summaries of parallels

	Introductio	on and Goals			Bonnie Fleming et al.	Accelerator-based Dark N			
nda	Acceler: Coffee Muon C	14:00	Muon Collider - CLFV Robert Berns et al.	Muon Collider - Dark Sectors Cari Cesa et al.	CLFV - Neutrinos Anil Thapa et al.	Muon Collider - Neutrinos Zahra Tabrizi	Dark Sectors - Neutrinos Alexa Sousa et al.	Dark Sectors - CLFV Jure Zupan et al.	Coffee 14:45 - 15:15
	Lunch		14:00 - 16:00	14:00 - 16:00	14:00 - 16:00	14:00 - 16:00	14:00 - 16:00	14:00 - 16:00	11:15 - 13:0
	Disc IC + CLFV	: B. Ber	on Leads nstein, S. Jir C. Cesarotti,	ndariani		Lunch Synergies: Parallel discu:		sics, dete	13:00-14:0
CLFV + M Dark Sectors	Neutrinos uC + Neut + Neutrin	s: I. Biga trinos: C os: B. D	ran, R. Plest . Herwig, Z.		elerator co		itarities of		
					15:15 - 17:00	Summaries of parallels			‡ Fermil

Anticipated workshop outcomes

- Write a **brief report** on the content and summary of findings/discussion
 - Targeting ~few weeks after workshop
- Follow-up workshops to develop accelerator concepts based on discussions and report from 1st ACE Science workshop
 - Commission accelerator studies based science workshop findings
 - Define initial ACE configurations and R&D required
 - Based on elements defined in PIU-CDG report

ACE Coordination

BR Study Harnik/Syphers/Ristori w/HEP and Accelerator Working groups

ACE Steering Committee (Coordinate w/international organizations)

Goal: Organize meetings & workshops, collate materials, commission studies to prepare materials for CD-0 (Including workshop next week, June 14-15)

Work with lab management to define steering committee

Remarks from charge

"The PAC will be asked to review the process for community engagement, identification of the science goals, development of alternative concepts and functional requirements."

- A significant amount of work done to understand science capabilities at future Fermilab accelerator facility, **now with ACE (PIP-II and BR era)**
 - Process underway to understand how science capabilities are complementary
 - Science priorities set by community engagement, Snowmass + P5 processes
 - e.g. renewed community interest in Muon Collider
 - Develop in alignment with P5
 - This will set functional requirements and alternative concepts
 - Includes DUNE requirement of 2.4 MW
 - Develop ACE configurations satisfying requirements

Status and summary

- In light of PIU-CDG findings and Snowmass community study...
 - Step back and re-evaluate ACE Science program and design
 - Assemble community input and understand physics thrust complementarity
- Next steps:
 - ACE Science Workshop next week (June 14-15)
 - https://indico.fnal.gov/event/59663/
 - First in a series of workshops to co-design physics case and technical design
 - Accelerator Design workshop planned for mid-July
 - Establish ACE Steering Committee to continue development of ACE towards CD-0 in ~2 year timescale

Backup

Booster Replacement configurations

RCS Configurations:

C1a) 10 Hz metallic vac. chamber (~2GeV-8GeV): lower power at low energies, less physics opportunities, but could be made to be upgradabl

C1b) 20 Hz with ceramic vac. chamber (larger magnets) (~2 GeV-8 GeV), ~2 GeV Accumulation Ring (fixed energy, ideally separate from RCS tunnel)

C1c) 20 Hz with ceramic vac. chamber, high current linac (~2 GeV-8 GeV), no accumulation ring, need ~8mA current in PIP-II to quadruple the number of particles per injection compared to PIP-II

SRF Linac Configurations:

C2a) Basic: Slight increase in PIP-II current, demonstrated XFEL RF

- Meets LBNF/DUNE requirements without any major R&D on RF.
- Small amount of power for 8 GeV program
- Uses the recycler (options C2b & C2c don't)

C2b) High Duty factor RF source - Slight increase in PIP-II current, significant RF upgrade

• Needs longer pulses, higher rep rate, and significantly more power for 8 GeV program

C2c) Higher Current PIP-II - Significant upgrade (2.7mA to 5mA) , some RF R&D

 Combination of options 2 and 3 could provide MW-scale beam power at 8 GeV

