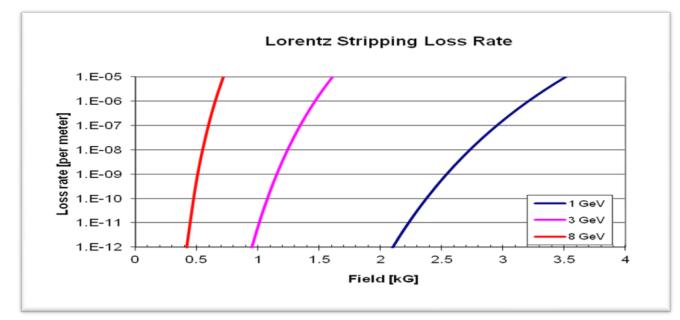
MI/RR Injection Location Options and Transfer Lines

David Johnson October 4, 2012

MI/RR Straight Sections

- MR/RR injection options ۲
 - injection into Recycler for accumulation then single turn injection into MI (low linac current)
 - Inject directly into MI (high linac current or long pulse injection)
- MI/RR straight sections
 - Four 3 half-cell straight (22,32,52,62)
 - Two 4 half-cell straight (10,40)
 - Two 8 half-cell straight (30,60)
- Would like symmetric straight for multi-turn injection (Booster, SNS, JPARC, etc)
 - Easier to make symmetric straight at 4 or 8 half-cell straights
 - MI/RR-30 MI collimation system, MI/RR transfer beam line
 - MI/RR-60 Both rings filled with RF & MI extraction for NuMI
 - MI/RR-10 MI filled with LBNE extraction / RR open for modification
 - MI/RR-40 both rings filled with abort extraction systems

Beam Line Costs


- Technical components
 - Magnets (dipoles, quads, trims)
 - Power supplies
 - Vacuum system (pipe, gauges, pumps, etc.)
 - Instrumentation
- Installation /Alignment
 - Magnet stands/ magnets
 - Vacuum system
 - Instrumentation
 - Cabling
- Utilities and cable trays come with enclosure
- Magnet/power supply costs dependent on types of magnet design, power, cooling, half-cell length, packing fraction, etc. not easily scaled
- Instrumentation generally based on number of half-cells
- Vacuum system can ~scale with length

Beam Line Costs

- IDC-1 (M&S, SWF, direct) \$12.7 M
 - 8 GeV H- to RR (1.2 km)
 - 133 perm. mag, 88 trims, 10 electro. mag ~\$6.7M
- ICD-2 (M&S, SWF, direct)

- \$ 15.1 M
- 2 GeV to RCS/dump & 8 GeV to RR/dump
- 295 electro magnets (dipoles, quads, trims) ~\$9M
- Total lengths 1.25 km
- Vacuum ~ \$4M/1.25 km -> ~ \$1000/ft.
- Costs dominated by magnets, then vacuum

Dipole Strengths

	Loss Rate					H.C. length	10	
	10 ⁻⁶ /m	10 ⁻⁹ /m	10 ⁻⁶ /m	10 ⁻⁹ /m		P. F	0.7	
Energy[GeV]	B [kG]		Theta [deg]		Total bend ang/HC		Aveg radius [m]	
1.00	3.21	2.55	3.25	2.58	22.75	18.06	25	32
3.00	1.47	1.16	0.66	0.52	4.62	3.65	124	157
8.00	0.65	0.52	0.13	0.23	0.88	1.63	655	351

10m

Summary

- Symmetric straight section is best
- Easier to modify 4 half-cell straight
- RR30 possible, but
 - difficult siting of linac and 3 GeV Experimental Area
 - close to Kirk Rd
 - 8 GeV linac / dump pointing to site boundary
- RR10 still best option
 - LBNE extraction from MI
 - Must approach from East
- Dipole strength limited by Lorentz stripping
- Beam line costs dominated by magnets and vacuum system, depending on beam line design