

180 degree Bends

Valeri Lebedev Fermilab

Siting workshop, Oct. 4.2012

Straight linac

L~165 m (ΔE_{LB} = 11.7 MeV/cav, ΔE_{HB} = 17.7 MeV/cav)

<u>Bend Linac</u>

To be useful the bending has to happen at $s \approx 90$ m (E ≈ 400 MeV)

- Maximum magnetic field B≈5.2 kGs
 - Striping rate $\approx 10^{-7} \text{ m}^{-1}$
- RMS momentum spread $\approx 3.10^{-4}$
- RMS bunch length \approx 1.8 mm (1.4 deg)

<u>Beam Optics for 180° Bend</u>

Wed Oct 03 15:17:43 2012 OptiM - MAIN: - C:\VAL\Projects\ProjectX\Stage_I\BendLinac.opt

Mean arc radius = 8.38 m (16.76 m beam separation)

Momentum compaction = 0.271 instead of desired 0.491

•
$$M_{56} = 5.95 \text{ m} (L=27.03 \text{ m}, L/\gamma^2=13.28 \text{ m})$$

• $\Delta \sigma_s = M_{56} \sigma_p / p = 1.78 \text{ mm}$

 \circ It is close to the bunch length σ_{s} = 1.8 mm & can be accommodated by longit. focusing with acceptable loss of accelerating gradient

Further reduction of slip-factor (M₅₆) can be achieved if dispersion is not zeroed at the line end

Horizontal emittance growth

180 Degree Bend, Valeri Lebedev, Siting workshop

Beam Optics for 180° Bend (continue)

Wed Oct 03 16:31:57 2012 OptiM - MAIN: - C:\VAL\Projects\ProjectX\Stage_I\BendLinac.opt

Conclusions for the bend linac

- Total insert length of ~60 m is comparable to the linac length of ~170 m
- Radius of the bend is quite large (~8.5 m) and implies two tunnels separate by ~17 m
- Slip-factor of the insert is not zero ($M_{56} \approx 6m$)
 - It makes the bunch lengthening of ~1.4 times and cannot be absorbed by adjustments of longitudinal focusing
- It is impossible to make an achromatic and isochronous 180° bend for ~400 MeV protons (H⁻)
- Significant complications for machine tuning
- Overall does not look as a promising avenue