黄Fermilab

180 degree Bends
 Valeri Lebedev Fermilab

Siting workshop, Oct. 4.2012

Straight linac

L $\sim 165 \mathrm{~m}\left(\Delta \mathrm{E}_{\mathrm{LB}}=11.7 \mathrm{MeV} / \mathrm{cav}, \Delta \mathrm{E}_{\mathrm{HB}}=17.7 \mathrm{MeV} / \mathrm{cav}\right)$

Bend Linac

- To be useful the bending has to happen at $s \approx 90 \mathrm{~m}(E \approx 400 \mathrm{MeV})$
- Maximum magnetic field $B \approx 5.2 \mathrm{kGs}$
- Striping rate $\approx 10^{-7} \mathrm{~m}^{-1}$
- RMS momentum spread $\approx 3 \cdot 10^{-4}$
- RMS bunch length $\approx 1.8 \mathrm{~mm}$ (1.4 deg)

Beam Optics for 180° Bend

Wed Oct 03 15:17:43 2012 OptiC - MAIN: - C:IVALIProjectsIProjectXIStage_IIBendLinac.opt

- Mean arc radius $=8.38 \mathrm{~m}$ (16.76 m beam separation)
- Momentum compaction $=0.271$ instead of desired 0.491
- $M_{56}=5.95 \mathrm{~m}\left(L=27.03 \mathrm{~m}, \mathrm{~L} / \gamma^{2}=13.28 \mathrm{~m}\right)$
- $\Delta \sigma_{s}=M_{56} \sigma_{p} / p=1.78 \mathrm{~mm}$
o It is close to the bunch length $\sigma_{s}=1.8 \mathrm{~mm}$ \& can be accommodated by longit. focusing with acceptable loss of accelerating gradient
- Further reduction of slip-factor $\left(M_{56}\right)$ can be achieved if dispersion is not zeroed at the line end
- Horizontal emittance growth

Beam Optics for 180° Bend (continue)

Wed Oct 03 16:31:57 2012 OptiM - MAIN: - C:IVALIProjectsIProjectXIStage_IIBendLinac.opt

Wed Oct 03 16:32:33 2012 OptiM - MAIN: - C:IVALIProjectsIProjectXIStage_IIBendLinac.opt

Twiss functions (top) and rms beam sizes (bottom) in the insert vicinity $\varepsilon_{n}=0.25 \mathrm{~mm} \mathrm{mrad}, \sigma_{p}=3 \cdot 10^{4}$

Conclusions for the bend linac

- Total insert length of $\sim 60 \mathrm{~m}$ is comparable to the linac length of ~170 m
- Radius of the bend is quite large ($\sim 8.5 \mathrm{~m}$) and implies two tunnels separate by $\sim 17 \mathrm{~m}$
- Slip-factor of the insert is not zero ($\left.M_{56} \approx 6 \mathrm{~m}\right)$
- It makes the bunch lengthening of ~ 1.4 times and cannot be absorbed by adjustments of longitudinal focusing
- It is impossible to make an achromatic and isochronous 180° bend for $\sim 400 \mathrm{MeV}$ protons $\left(\mathrm{H}^{-}\right)$
- Significant complications for machine tuning
- Overall does not look as a promising avenue

