

Towards a Muon Collider accelerator

Diktys Stratakis (Fermilab) P5 Town Hall at SLAC May 3rd, 2023

On behalf of US Muon Collider Community, International Muon Collider Collaboration, and Snowmass Muon Collider Forum

Muon Collider in comparison with other machines

 A Muon Collider would offer a precision probe of fundamental interactions, in a <u>smaller</u> footprint and <u>good</u> power efficiency as compared to other colliders

Snowmass Muon Collider Forum

- The forum established a strong collaboration between the AF+EF+TF frontiers for Muon Collider (MuC) research
 - Monthly meetings and dedicated workshops for 18+ months before Snowmass: 160 e-mail subscribers, 50-100 regular participants
 - MuC Forum report is now <u>public</u>: ~180 authors, 50+% are early career scientists
- Forum conclusions:
 - Significant progress on MuC work recently
 - BUT engineering challenges exist
 - Requires significant R&D for making a Muon Collider a credible option

🎝 Fermilab

 MuC was the most studied machine during Snowmass. Many new results & papers, propagated to the EF vision.

International Effort

- 2020: Following the 2018 European Strategy process, Laboratory Director's Group initiated a Muon Collider feasibility study
- 2022: Formation of the International Muon Collaboration (IMCC)
 - US universities started to join, many more expressed interest
 - IMCC planning assumes a significant US participation to develop the baseline project and the best siting option (including US siting)

Target parameters

	• • •		
larget	Integrate	ed lumin	osities
- arget	micegi ac		001000

Note: currently focus on 10 TeV, also explore 3 TeV

- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years
- Aim to have two detectors

Feasiblity addressed, will evaluate luminosity performance, cost and power consumption

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
N	1012	2.2	1.8	1.8
f,	Hz	5	5	5
Pbeam	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / E	%	0.1	0.1	0.1
σ	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63

Machine overview

 Requires a 1-4 MW proton beam @ 5-20 GeV, compressed to 1-3 ns bunches at a 5-10 Hz frequency

🛟 Fermilab

Muon Collider target: Concept & technology needs

- Technology requirements for MuC targets:
 - Target materials that produce high muon yield; This requires their placement in a high-field solenoid (15-20T)

🔁 Fermilab

- Tolerant materials to thermal shock and fatigue from MW-scale beams
- Shielding system that protects the capture magnet and surrounds
- Large solenoidal aperture to allow for shielding

Muon Collider target: Path forward (1)

- In 2007, a proof-of principle test validated the concept with a liquid Hg target. Technology was OK but some safety concerns
- Recent work shows promising results with C or W but still significant R&D is needed to confirm that the target can withstand 2+ MW
- This fact, combined with the strong demand of high-power targets puts the MuC in a synergistic path with many future experiments:

Experiment	Material	Energy	Target in Sol	Synergy with Muon Colliders
LBNF Phase-1	С	120 GeV	No	Material test, physics performance
Mu2e	W	8 GeV	YES	Material test, physics performance, magnet integration
Mu2e-II (proposed)	C, W,	800 MeV	YES	Same, but higher power density of Mu2e
AMF (proposed)	C, W,	800 MeV	YES	Same, even higher power density of Mu2e-II

Muon Collider target: Path forward (2)

 MuC targetry is included in the proposed HPT roadmap (GARD) with a plan to have a prototype in the late 2030s

Muon Collider cooling – Concept & technology needs

- Technology requirements for MuC cooling:
 - Large bore solenoidal magnets: From 2 T (500 mm IR), to 14 T (50 mm IR)
 - Normal conducting rf that can provide high-gradients within a multi-T fields
 - Absorbers that can tolerate large muon intensities
 - Integration: Solenoids coupled to each other, near high power rf & absorbers)

Muon Collider cooling: Path forward (design)

- Good progress in all cooling section designs over the last year. BUT, the final cooling did not achieve our goals [ref]
- Goals for next **5 years**:
 - (1) Deliver a realistic end-to-end design that meets the MuC criteria (2) take into account engineering aspects of the design and (3) improve performance with AI/ML methods and latest technology advancements

Muon Collider cooling: Path forward (demonstrator)

- While the physics of ionization cooling has been demonstrated [<u>ref</u>] it is critical to develop a cooling demonstrator using a realistic lattice
 - Requires significant effort on the facility design & site exploration
 - Goal for the next 5 years: Deliver demonstrator TDR with cost estimates & site selection (including US options)

Acceleration to GeV – Concept & technology needs

- Technologies requirements for a Muon Collider:
 - Superconducting linacs and Recirculating linear accelerators (RLAs)
 - SC RF that: (1) starts at a low frequency ~ 325 MHz, (2) operate at highgradients

Acceleration to TeV – Concept & technology needs

- Technologies needs for a Muon Collider
 - Hybrid Rapid Cycling Synchrotron accelerators
 - Fast ramping magnets (<0.5 ms) accompanied with a 8-10 T DC magnet
 - Energy storage and power management with high quality factor

Muon Acceleration: Path forward

- In the next 5 years develop self-consistent accelerator lattice designs towards a 10 TeV collider
 - Investigate the beam-cavity interactions in all parts of the accelerator
- Utilize the extensive experience of the US on SRF for:
 - Design and testing SRF cavities for a MuC (325, 650, 1300 MHz)
 - Investigate alternative superconductors for pushing the gradient
 - Significant synergy with other programs (ILC, FCC-ee, GARD)

Muon Collider ring – Concept & technology needs

- Technology requirements for a 10 TeV ring
 - Strong quad focusing (> 12 T at IR)
 - High-field dipoles (12-16 T) with large aperture (~150 mm) for shielding
 - Mitigation system for the dense neutrino flux from muon decays

Muon Collider ring – Path forward

- Lattice design in place for a 3 TeV collider with optics and magnet parameters within existing technology limits
- In the next 5-years: Develop concepts for a 10 TeV collider
 - The shielding required is roughly the same for 3 TeV and 10 TeV [ref]: Good!
 - Preliminary concepts for 10 TeV published [ref] but more work is needed
 - Develop conceptual magnet designs with shielding from beam decay
- Several solution for Neutrino flux mitigation proposed and need to be evaluated
 - Examples include situating the collider ~200 m underground [ref] or move lattice overtime [ref] or a combination of the two
 - Promising example to follow (next slide)

Neutrino flux mitigation (IMCC scheme)

Legal limit: 1 mSv/year MAP goal: <0.1 mSv/year IMCC goal: <10 µSv/year LHC : <5 µSv/year

Solution: A mechanical system that will disperse the neutrino flux by periodically deforming the collider ring arcs vertically with remote movers; (Schulte, IPAC 22)

Muon Collider Magnets: Path Forward

MuC section	Туре	10 TeV MuC needs	Status
Cooling	Solenoid	30-50 T @ 50 mm	32 T @ 50 mm
Acceleration	Rapid cycling mag.	1.8 T @ 5 kT/s (30 mm x 100 mm)	1.8 T @ >5 kT/s (1.5 mm x 36 mm)
Collider Ring	Dipole	12-16 T @ 150 mm	11-12 T @ 120 mm
IR	Quadrupole	15-20 T @ 150 mm	11-12 T @ 150 mm

- ~15% improvement by 2030 may be possible
- Many synergies with other programs. BUT RCS is unique for MuC!

	LUC III 10 T guad				Synergies		
SZI WINDIVIFL	LIC-IL IZ I quad		US-MDP	Future Colliders	Fusion	ARDAP/Industry	NSF (NMR)
	@ 150 mm	Target Solenoid					
		Cooling Channel Solenoids					
		High Ramp Rate for RCS					
		Collider Dipoles					
		IR Quads					
		Alternatives R&D					
		HTS for collider magnets					
		Acceleration					
		FFA					
		RLA					
		Conventional					
						JE East	rmilah

ACE and Muon Collider

- Muon Collider proton driver needs are beyond existing facilities
- Fermilab ACE program offers several synergies with Muon Collider R&D
- The ACE booster replacement plan may provide a path for a MuC front-end
 - ACE parameters are being defined. Workshop in June will investigate synergies and options, including front-end for a MuC

Muon Collider Proton Driver Parameters			
5-15 GeV			
5-10 Hz			
1-4 MW			
1-3 ns bunch with $^{\sim}10^{14}$			

Muon Collider @ Fermilab

- A conceptual for Fermilab 6-10 TeV MC site-filler is in place
- Proton source
 - Post-ACE driver -> Target
- Ionization cooling channel
- Acceleration (3 stages)
 - Linac + RLA \rightarrow 65 GeV
 - RCS #1, #2 \rightarrow 1 TeV (Tevatron size)
 - RCS #3 \rightarrow 5 TeV (site filler)
- 10 TeV collider
 - Collider radius: 1.65 km

 In the next 5 years, have a baseline design including the neutrino flux mitigation system, establish operating parameters and develop technology concepts with potential to meet these parameters

US Muon Collider R&D coordination group

- In March, R&D coordination group formed to provide input to P5
- Focus on key elements of **10 TeV accelerator & detector design**
 - Develop R&D plan, activities, budget and deliverables
 - Chairs: Sridhara Dasu (Wisconsin), Sergo Jindariani, Diktys Stratakis (Fermilab)

Physics Case Development: Patrick Meade (Stony Brook), Nathaniel Craig (UCSB)	Detector R&D Focus Areas: Tracking Detectors: Maurice Garcia-Sciveres (LBNL), Tova Holmes (Tennessee)	
Accelerator R&D Focus Areas:	Calorimeter Systems	
Muon source:	Chris Tully (Princeton), Rachel Yohay (FSU)	
Mary Convery (Fermilab), Jeff Eldred (Fermilab), Sergei Nagaitsev (JLAB), Eric Prebys	Muon Detectors	
(UC Davis)	Melissa Franklin (Harvard), Darien Wood (Northeastern)	
Machine design:	Electronics/TDAQ	
Frederique Pellemoine (Fermilab), Scott Berg (BNL), Katsuya Yonehara (Fermilab)	Darin Acosta (Rice), Isobel Ojalvo (Princeton), Michael Begel (BNL)	
Magnet systems:	MDI+Forward Detectors:	
Steve Gourlay (Fermilab), Giorgio Apollinari (Fermilab), Soren Prestemon (LBNL)	Kevin Black (Wisconsin), Karri DiPetrillo (Chicago), Nikolai Mokhov (Fermilab)	
RF systems:	Detector Software and Simulations:	
Sergey Belomestnykh (Fermilab), Spencer Gessner (SLAC), Tianhuan Luo (LBNL)	Liz Sexton-Kennedy (Fermilab), Simone Pagan Griso (LBNL)	
International Liaisons: Daniel Schulte (CERN), Chris Rogers (RAL), Donatella Lucchesi (INFI	N). Federico Meloni (DESY)	

US Muon Collider timeline

A possible R&D roadmap

2024-2030

- Complete design & simulation of the whole MuC complex, including a neutrino flux mitigation system (include designs for a Fermilab MuC option)
 - Take into account engineering aspects of the design, establish operating parameters and develop technology concepts with potential to meet these parameters
- Proceed with prototyping & technology R&D
 - Rapid cycling magnets: magnet prototype, including its power deliver system
 - Proton driver tests: bunch compression and laser stripping at existing facilities
 - Target: material study & pion yield measurement at existing facilities
 - Conceptual design for magnets and cavities along the complex with some prototyping
 - Engineering design of the cooling demonstrator
- Define what we like to test, how and where after 2030
- By the next Snowmass study, have enough information to illustrate that a MuC has received enough maturity to be the next machine in the 2040s

It is crucial for the US to engage **NOW** if we want an MC as a future option!

24 5/03/2023 **P5 Town Hall at SLAC**

Synergistic with other programs

🚰 Fermilab

US R&D budget estimate (Accelerator)

- 2024+: US accelerator experts funded to engage with the IMCC
 - Ramp-up cost profile towards equal-partnership with the European effort.
- ~2030: Deliver a MuC reference design report and a TDR report for the demonstrator facility with cost estimates
- 2031+: Develop technology to be ready to commit, verify performance of all components
 - Cooling channel demonstrator is expected to be the cost driver. EU accounting ~\$300M

Summary

- MC offers a unique opportunity for energy frontier collider with high luminosity
- Physics & technology landscape has significantly changed recently
- We have established a highly motivated group to address challenges for a Muon Collider
- As also presented at BNL, we are asking P5 to:
 - Recommend establishing a Muon Collider R&D program with the aim for delivering a RDR report for the final facility & TDR report for the demo facility by 2030 AND with an overall goal of having a TDR for the final facility by 2040
 - Recommend that DOE and NSF recognize Muon Collider work within the AF base program proposals
 - Support the formation of a US Muon Collider effort to coordinate US impact while engaging in the international effort
 - Enable US to compete for hosting a Muon Collider

Extra

Demonstrator facility consideration

- Finding demonstrator sites is a key component of the effort
 - Demonstration of radiation and shock resistance of materials
 - Demonstration of high field muti-Tesla magnets for muon production, cooling, acceleration and collision
 - Demonstration of high gradient, normal conducting rf cavities for cooling and power-efficient superconducting rf for acceleration
 - Demo of an integrated ionization cooling module as an engineering prototype
- Other challenges exist but can be addressed with prototypes and beam tests (e.g. collider & fast cycling magnets, magnet movement system for neutrino flux mitigation, H- stripping, bunch compression)

Muon Collider Synergies

Facility/Experiment	Physics Goals	Synergy
nuStorm	Short baseline neutrino program, including searches for sterile neutrino and cross section measurements	100kW proton source, muon production and collection, storage ring operation
Neutrino Factory (e.g. nuMax)	Better CP, mixing angles, mass splitting, non- standard interactions	MW class proton source, muon production and collection, 6D partial cooling and muon acceleration (up to ~5 GeV)
Dark Sector searches	Searches for particles from Dark Sectors produced in fixed target experiments using high intensity proton beam	MW class high-intensity proton beams
Charged Lepton Flavor Violation (e.g. AMF)	Searches for rare lepton flavor violating processing (mu2e, mu2eg, mu3e, etc)	MW class proton source, muon production and collection, storage ring
Beam dump experiments	Searches for exotic particles (dark photons, Lmu- Ltau, etc) in muon beam dump experiments	100kW – MW proton source, muon production and collection, partial cooling and acceleration
Neutrinos from collider beam muon decays	DIS in neutrino-nucleus interactions, better nuclear PDF, atmospheric neutrinos FASERv like experiment with smaller flux uncertainties	Everything up to multi-TeV energy collider beams
Muon Ion Collider	A broad program addressing many fundamental questions in nuclear and particle physics	Everything up to multi-TeV energy collider beams

Muon Collider Challenges

Challenge	Progress	Future work
Multi MW proton sources with short bunches	Multi-MW proton sources have been and are being produced for spallation neutron sources and neutrino sources (SNS, ESS, J-PARC, Fermilab)	Refine design parameters, including proton acceleration to 5-10 GeV. Accumulation and compression of bunches.
Multi MW targets	Neutrino targets have matured to 1+MW. RADIATE studies of novel target materials and designs aim at 2.4MW.	Develop target design for 2 MW and short muon collider bunches. Produce a prototype in 2030s.
Production solenoid	ITER Nb3Sn central solenoid with similar specifications and rad levels produced	Study cryogenically stabilized superconducting cables and validate magnet cooling design. Investigate possibility of HTS cables.
Cooling channel solenoids	Solenoid with 30+T field now exists at NHMFL. Plans to design 40+T solenoids in place.	Extend designs to the specs of the 6D cooling channel, fabrication for the demo experiment
Ionization cooling	MICE transverse cooling results published. Long.cooling via emittance exchange demonstrated at g-2.	Optimize with higher fields and gradients. Demonstrate 6D cooling with re-acceleration and focusing
RF in magnetic field 30 S. Jindariani, BNL P5 Townhall	Operation of up to 50 MV/m cavity in magnetic field demonstrated, results published	Design to the specs of the 6D demo, experimen; fabrication

Muon Collider Challenges

Challenge	Progress	Future work
Fast Ramping Magnets	Demonstrated 5000+ T/s with 1.8T	We need to design a efficient power supply system for these magnets
Neutrino Flux Effects	Mitigation strategies based on placing the collider ring at 200m and introducing beam wobble has been shown to achieve necessary reduction up to 10-14 TeV	Study mechanical feasibility, stability and robustness of the mover's system and impact on the accelerator and the beams
Detector shielding and rates	Demonstrated to be manageable in simulation with next generation detector technologies	Further develop and optimize 3 and 10 TeV detector concepts and MDI. Perform detector technology R&D and demonstration.
Open aperture storage ring magnets	12-15T Nb3Sn magnets have been demonstrated	Design and develop larger aperture magnets 12-16T dipoles
Low-beta IR collider design and dynamic aperture	Lattice design in place for a 3 TeV collider with optics and magnet parameters within existing technology limits	Develop lattice design for a 10 TeV collider

