

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

EIC RCS Dipole Magnet (Coils air cooling)

Vladimir Kashikhin FNAL-JLAB Meeting April 24, 2023

RCS Dipole 2D Simulation

Coil ampere-turns 4100 A. Center field 0.25523 T. Iron peak field Bmax=1.03 T. Pole profile optimized to obtain the best field homogeneity in the magnet gap by variations:

 Pole width, pole shim height, and radiuses R1, R2.
Besides the pole contour is smooth and has uninterrupted dy/dx derivative to eliminate high order harmonics.

RCS Dipole 2D Field Homogeneity

Field homogeneity area +/- 0.1%.

Field homogeneity area +/- 0.02%.

RCS Dipole 3D Field

Iron core flux density. Bmax=1.4 T (in corners).

Integrated field harmonics in units (10⁻⁴). Integrated field 0.491 T-m.

RCS Dipole Specification

Parameter	Unit	Value
Number of magnets (3 magnets/dipole module)		1152
Magnetic length	m	1.148
Gap	mm	40
Gap minimum field at 0.4 GeV	Т	0.0191
Gap maximum field at 18 GeV	Т	0.2852
Field quality at Rref=20 mm	%	0.1
Current ramp time	S	0.1
Current pulses repetition rate	Hz	1.0
Field maximum integrated strength/magnet	T-m	0.327
3 magnets integrated strength	T-m	0.982
Magnet cooling		Air

RCS Dipole Parameters

Parameter	Unit	Main coils	Trim coils
Coil copper conductor	mm	20 x 35	10 x 35
Number of turns/pole		2	2
Number of dipole cores		3	1
Number of racetrack		2	2
Magnet resistance	mOhm	0.914	0.32
Peak gap field	т	0.2856 (18 GeV)	0.06 (1.26 GeV)
Peak current	А	2275	955
Peak DC voltage	V	2.08	0.3
Average power losses main/trim	W	383	230

RCS Dipole Circuit Diagram

Two power supplies: Main and Trim working independently.

4/24/2023

‡ Fermilab

RCS Dipole Drive Functions

Normalized for Bmax=0.28516 T, peak current 2275 A.

4/24/2023

‡ Fermilab

RCS Dipole 3D Model View (Main mode)

Only main coil powered at current 2275 A.

4/24/2023

‡ Fermilab

RCS Dipole 3D Model View (Trim mode)

Only trim coil powered at current 955 A.

RCS Dipole Electron Beam Tracks

The difference 5.36 mm (maximum) between tracks for 0.4 GeV and 18 GeV electron beams.

🛟 Fermilab

4/24/2023

RCS Dipole Cross-Section

12 V. Kashikhin | EIC RCS Dipole Magnets

4/24/2023

‡Fermilab