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Hanbury Brown and Twiss with the
Narrabr: Stellar Intensity Interferometer

- Pioneered by Robert Hanbury Brown and Richard Twiss — initially used in
radio-astronomy to measure angular sizes of two prominent radio sources:
Cygnus A and Cassiopeia A




Hanbury Brown and Twiss with the
Narrabr: Stellar Intensity Interferometer

- Pioneered by Robert Hanbury Brown and Richard Twiss — initially used in
radio-astronomy to measure angular sizes of two prominent radio sources:
Cygnus A and Cassiopeia A

- They developed a theory of intensity interferometry using light waves,
leading to the development of the Narrabri Stellar Intensity Interferometer
from 1963-1974

It produced reliable measurements and displayed the potential for astronomaical
interferometry — measured angular size of stars down to 2.5 magnitude
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Hanbury Brown and Twiss with the
Narrabr: Stellar Intensity Interferometer

- Pioneered by Robert Hanbury Brown and Richard Twiss — initially used in
radio-astronomy to measure angular sizes of two prominent radio sources:
Cygnus A and Cassiopeia A

- They developed a theory of intensity interferometry using light waves,
leading to the development of the Narrabri Stellar Intensity Interferometer
from 1963-1974

It produced reliable measurements and displayed the potential for astronomaical
interferometry — measured angular size of stars down to 2.5 magnitude

- With the implementation of modern technology, “
sensitivity can be improved
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Intensity Interferometry

- Uses two light detectors with extremely long baselines pointed at a single
astronomical source to measure excess rate of photon arrivals




Intensity Interferometry

- Uses two light detectors with extremely long baselines pointed at a single
astronomical source to measure excess rate of photon arrivals
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- Stars: spatially incoherent

- The length of the transverse correlations coming from an incoherent source
contains information about the angular size of that source.

- There will be a measurable excess correlation of photons arriving at the two
counters.




Intensity Interferometry

- Measures the excess correlation of simultaneously recorded photons as a
function of:

* baseline separation of the two detectors b
- wavelength A

- Excess correlation provides:

1. Measure of uniform brightness of star (coherence function/intensity power spectrum)
2. Angular size of the source
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Advantages

v'No need for mutually coherent local oscillators at different telescope
stations — only need digital electrical components

v Easily scalable for long baselines and multiple telescopes

v High optical angular resolution — dependent on baseline length which can be
arbitrarily large

v Rapid development in single photon detector technology can provide
increased sensitivity




(Goal?




(Goal?

To test the efficacy of optical
Intensity interferometry using

SNSPDs




SNSPD: Superconducting Nanowire
Single Photon Detector

‘I An SNSPD is simply a
= S current-biased super- 2
A o ; £~ conducting wire in parallel
N ,/'\F_Lj: li/ with a readout circuit.
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When a photon
hits the wire, it
creates a hotspot,
where a small
region of the wire
goes normal.

S 3 The current diverts
%ﬂound the hotspot.

after [1] Gol'tsman et al. (2001)

5 With the current through the
n wire reduced, the hotspot

anowi
cools off, returning the wire to its
original state.

4 The current density surrounding the hot-
spot exceeds the critical curent, and the
entire wire width goes normal. The current

is redirected through the measurement circuit,
creating a detectable voltage pulse.

- SNSPDs have high resolution and good quantum efficiency in the infrared,
making them advantageous in intensity interferometry.

- SNSPDs have not been applied to intensity interferometry before.

Picture retrieved from:
https://indico.physics.lbl.gov/event/815/attachments/1750/2119/APH 110 2018.pdf
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Key Components

- 35-inch-long dark box
- An LED light source (artificial star) with aperture in front

- Two optical fibers with collimators attached for focusing light at 1 micron
into nanowire — one stationary and one mobile for baseline adjustment

- All components mounted on optical breadboard




Preliminary
Calculations




Thermal Load

- Determine the photon flux of source
(artificial star)

.QBAAA

flux = Y

+ Q: solid angle

* B,: spectral radiance of blackbody, given by
Planck’s Radiation Law

« AA: wavelength bandwidth (assumed small)
* £[A]: energy per photon (hc/A)




Thermal Load B

- Determine the photon flux of source , ,
(artificial star) i / |
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+ Q: solid angle

* B,: spectral radiance of blackbody, given by 0.01r

Planck’s Radiation Law

+ AA: wavelength bandwidth (assumed small) 10-5;

thermal photon flux (Hz/mmz)

) 8[/1]: Cnergy per phOtOl’l (hC/A) 0|8 N ‘Of9l - I1i0‘ N I’I‘.'ll N I1.2I - ‘1.3I N I'l.4| N I1.5

A (pm)

- As to not oversaturate the nanowire, we
are restricted to 1 < 1.2 um.




Coherence Function

- Provides a quantitative measure of the uniform brightness of the star

2
2
CI>=[ Jalx] where x = 2n—=0

X A
- J,: Bessel function of the first order
- b: baseline
 A: source wavelength
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Coherence Function

- Ideal x = 1 for resolved source

2
2
CI>=[ Jalx] where x = 2m—6
X A

- Limited to: distance between LED and fibers (~30 in)

- Adjustable parameters to achieve x = 1:

- Smaller baseli 't —
maller baseline | ool \
« Larger LED wavelength in IR range
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LED selection

- Need to achieve an optimal rate of photons for coincidence counting

- Number of photons per second exiting LED found by:

1
VratezEe'ﬁ°a

+ E,: Maximum Irradiance — radiant flux received per unit area measured at
a distance of 200 mm

- £[A]: energy per photon (hc/A)

* a: area of aperture hole —

2
D .
T (E) where D is the aperture
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Experimental Design
— Current Progress




Fusion
360 3D
rendering
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XY slip plate positioner

Mounted pinhole

Mounted LED

Optical post and holder




Miniature v-clamp for optical fiber
Aspheric pigtailed collimator on fiber

Optical post and holder

Dovetail mounting clamp
34mm rail

Dovetail mounting clamp

Fibers:
Option 1




6 axis kinematic optic mount

Adapter for collimator

Miniature v-clamp for optical fiber

Optical post and holder

Dovetail mounting clamp

R R s

34mm rail

!Dovetail mounting clamp

Option 2

- Assembly nearly complete: need precise alignment of collimator
with beam via laser




Future Work
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- Utilize SNSPDs to see expected excess [ 2 /
simultaneous photon rate gEzmnnt. ‘W
original state.

When a photon
hits the wire, it
creates a hotspot,
where a small
region of the wire
goes normal.

\ The current diverts
R O .. d the hotspot.
4 The curren t density surroun ding the hot-

spot exceeds the critical curent, and the
entire wire width goes normal. The current %

is redirected through the measurement circuit,

creating a detectable voltage pulse.
after [1] Gol'tsman et al. (2001)

Picture retrieved from:

- Intensity interferometry has potential to
provide high angular resolution to image
objects that appear small in the sky.

- Continued study into implementing
modern photon counters is needed to
achieve success.
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