Generation of arbitrary bunch shapes using a multileaf collimator and emittance exchange

Nathan Majernik^{*,1,3}, Gerard Andonian¹, Walter Lynn¹, Seongyeol Kim², Cele Lorch¹, John Parrack¹, Ryan Roussel³, Scott Doran², Eric Wisniewski², Charles Whiteford², Philippe Piot², John Power², James Rosenzweig¹

> ¹ UCLA, Los Angeles, CA, USA ² Argonne National Laboratory, Lemont, IL, USA ³SLAC National Accelerator Laboratory, Menlo Park, CA, USA *Corresponding author: majernik@slac.stanford.edu

Motivation

Energy [MeV]

- Transformer ratio, \mathcal{R} , defines the maximum energy that can be transferred from driver to witness: $\Delta E_w = \mathcal{R} \Delta E_d$
 - <2 for symmetric beams but shaped beams can exceed
- Pulse shaping options: laser pulse stacking, wakefield structures, doglegs, emittance exchange

Roussel, R., et al. *PRL* 124 (2020): 044802.

See also: Loisch, G., et al *PRL* 121 (2018): 064801.

Emittance exchange for advanced accelerators

- By transversely masking the beam before the EEX beamline, the final current profile is controlled
- Shaping drive and witness bunches with this approach has yielded record-breaking transformer ratios

Multileaf collimator masking

- Replace the laser cut tungsten masks in EEX beamline with a multileaf collimator (MLC)
- MLCs are commonly employed to shape radiotherapy beams
- Real-time, nearly arbitrary drive and witness beam shaping
- Highly synergistic with machine learning
- Extension of UCLA/AWA collaboration to study exotic shaped beams for HTR PWFA

Fabrication

- Almost 2000 individual parts
 - 3D printed as much as possible
- Chamber required high aspect ratio wire EDM for central slot
- Tungsten tips used multi-axis wire EDM for tapered press fit

Reassembly and installation

Experimental results

z [mm]

z [mm]

Triangle

z [mm]

z [mm]

Post-EEX current profile

Mask shadow

Initial friction test

- Need to ensure that the magnetic coupling is sufficient
 - Tradeoff between coupling strength and compactness
 - Breakaway force must exceed leaf+carrier weight, all friction sources, and some safety margin
 - Friction expected to be dominated by magnet-chamber interface due to substantial normal force
- Characterized breakaway force as function of vacuum chamber thickness for ¼" diameter magnets (consistent with 2 mm leaf spacing design)

Spaghetti and software

- 40 individual stepper controllers
- Arduino Mega controls these
- Arduino controlled over serial by laptop
 - Presently no automated feedback
- Designed with challenging EMI environment in mind
 - Double shielded, 4 twisted conductor cables connect to each stepper
 - Wires run in EMF shielded sheathes, grounded to Faraday cage electronics box

Electronics and software

- 40 individual stepper controllers
- Arduino Mega controls these
- Arduino controlled over serial by laptop
 - Presently no automated feedback
- Designed with challenging EMI environment in mind
 - Double shielded, 4 twisted conductor cables connect to each stepper
 - Wires run in EMF shielded sheathes, grounded to Faraday cage electronics box

Rotor MLC concept

Rotor MLC actuation

- Padlock inspired mechanism
- 20x fewer trans-chamber couplings
- Scales to larger aperture
 - Always installed on beamline
 Provisional patent

Rotor MLC

status

Feed forward control – initial guess

- Goal: Set leaves to produce userdefined current profile
- **Input space**: *n* leaf positions
- Output space: Current in k bins
- Each leaf, *i*, at a position x_i , maps to a contribution in this output space, $\vec{f_i}(x_i)$
- Since we're neglecting collective effects, sum all $\vec{f_i}$ to find the resulting current profile as a point in output space
- Optimize \vec{x}
- Additional considerations:
 - Increasing x_i gives monotonic response, but not in a straight line
 - Determining response functions:
 - Simulations
 - Experimentally via interpolation

Feed forward control – refinement

- Perturb each leaf about nominal position
 - Now assume linear response
 - Collective effects should be ~constant under this perturbation
- Perform optimization with these new response functions
 - Rinse and repeat as needed
- Users don't need to care about the rotor profiles, if there are 3D effects, etc.
 - Just specify what you want and let the control system create it

Summary

- Replaced laser cut tungsten masks with UHV-compatible multileaf collimator in EEX beamline
- Real-time, nearly arbitrary control over drive and witness bunch shaping
- Rotor-based MLC in development

- Feed-forward control demonstrated on simulated data; ready to deploy experimentally
- Future
 - Always-available AWA user capability: profile-on-demand
 - ML optimization of high transformer ratio

