Status and Outlook of Advanced **Accelerator Concepts Research in Europe**

Department of Physics, University of Oxford United Kingdom

Simon Hooker

Simon Hooker AAC24, Naperville, USA July 2024

Scope of talk

Only time to discuss large projects

- Will not discuss
 - Ion acceleration
 - THz / DLA

Simon Hooker AAC24, Naperville, USA July 2024

Scope of talk

Only time to discuss large projects

- Will not discuss
 - Ion acceleration
 - THz / DLA

Outline of talk

- EuPRAXIA
- LWFA research
- PWFA research
- Other topics
- Coordination
- Summary

Scope of talk

EuPRAXIA: European Plasma Research Accelerator with eXcellence in Applications

- - Advanced acceleration technologies
 - Laser drivers
 - Industrial & societal applications

Thanks to: Pierluigi Campana & Massimo Ferrario 4

• EuPRAXIA ESFRI Consortium

- 2 sites: LWFA-driven & PWFA-driven
- Excellence nodes
 - 1. Theory & simulation (Portugal)
 - 2. Laser & plasma accel. (France)
 - 3. Advanced applications (UK)
 - 4. Plasma acc. & high rep-rate dev. (Germany)
 - 5. Technology Incubator (Czech Republic)
 - 6. User data centre (Hungary)
 - 7. Beam diagnostics (Switzerland)

• EuPRAXIA-PP: Preparatory phase

- Objective: bring project to a level of organizational, legal, financial, & technological maturity that it can be implemented at the end of the preparatory phase
- 4 types of work package:
 - Coordination
 - Organizational
 - Technical (mirror Clusters)
 - TDR (link to two construction sites)

FuPRAXIA

References Assmann *et al., Eur. Phys. J. Spec. Top.* **229** 3675 (2020)

Thanks to: Pierluigi Campana & Massimo Ferrario 5

EuPRAXIA Consortium Networking

P. Campana - EuPRAXIA@Sparc Lab RC

Simon Hooker AAC24, Naperville, USA July 2024

UNIVERSITY OF

OXFORI

A large collection of the best European know-hows in accelerators, lasers and plasma technologies

Network organization - Sites (PWFA/LWFA) - National nodes - Technology clusters

4 candidates for LWFA - CLPU, Salamanca - CNR-INO, Pisa - ELI ERIC, Prague - EPAC-RAL, UK

5

EuPRAXIA

Funding expectations

- Total cost ~ €569M (2021)
 - 80% of Site 1 cost (Frascati) secured
- Sources of funding
 - In-kind + regional + EU calls
 - Operational costs primarily from host institutions / nations

EuPRAXIA Consortium Networking

A large collection of the best European know-hows in accelerators, lasers and plasma technologies

Network organization - Sites (PWFA/LWFA) - National nodes - Technology clusters

4 candidates for LWFA - CLPU, Salamanca - CNR-INO, Pisa - ELI ERIC, Prague - EPAC-RAL, UK

Funding expectations

- Total cost ~ €569M (2021)
 - 80% of Site 1 cost (Frascati) secured
- Sources of funding
 - In-kind + regional + EU calls
 - Operational costs primarily from host

Breakingnews

- Agreement in principle to fund PACRI project
- Budget: ~ €10M
- Objectives (abbreviated):
 - Dev. of high-rep-rate plasma modules for EuPRAXIA
 - Improving X-band technology, paving way to kHz operation
 - Dev. laser components required for high-power, high-rep-rate operation required by EuPRAXIA and ELI ESFRI

Laser-driven plasma wakefield accelerators (LWFA)

EPAC: Extreme Photonics Application Centre

Scope:

- £102M investment
- Suilding complete
- Laser being installed
- Operational 2026 / 27
- Objectives:
 - Acceleration of electrons, protons, ions
 - Generation of secondary radiation
 - Exploitation of plasma accelerators for applications in industry, medicine, & security
 - Fundamental science
- EPAC laser

JNIVERSITY OF

XFORD

- 1 PW, 10 Hz
- Ti:Sa pumped by 100 J DiPOLE pump laser

Simon Hooker AAC24, Naperville, USA uly 2024

Thanks to: Rajeev Pattathil

EPAC: Extreme Photonics Application Centre

EPAC will have 3 shielded target areas:

- ► EA1 (38 × 10 m):
 - Electron acceleration & applications
 - X-ray generation & applications
- ► EA2 (18 × 10 m):
 - Ion acceleration & HED science
- EA3: TBC

Extreme Light Infrastructure (ELI)

Three sites:

- ELI Beamlines (Czech Republic)
- ELI ALPS (Hungary)
- ELI NP (Romania)
- Apply for user access to ELI ERIC facilities at: <u>https://up.eli-laser.eu</u>

Primary source	Performance on target
L1-ALLEGRA	~50mJ, 15fs, 3TW, 1kHz, 800nm
L3-HAPLS	12J, 27fs, 0.4PW, up to 3.3Hz, 850nm
L4n-ATON	1.2kJ (0.3kJ@2w), 2-10ns, 1shot/2min, 1055nm
L4f-ATON (10PW)	under commissioning
L2-DUHA (100 TW)	under construction

eli ELI-Beamlines

ELI Beamlines, Dolní Břežany, Czech Republic

AAC24, Naperville, USA

July 2024

XFORD

ELI-Beamlines

- L1 Hall: ALFA kHz LPA
 - kHz electron bunch $E \leq 30 \,\text{MeV}$
 - In-air end station for user experiments
- E5: ELBA Electron Accelerator & Collider
 - Multi-GeV + PW laser electron-photon collider
 - QUB + ELI commissioning expts achieved 20 k shots in ~ 2 hours
- E2: Gammatron beamline
 - betatron / Compton source
 - ~ 10 fs, micron source size
 - 10^{11} photons shot⁻¹
 - Available Q4 2024
- E5: LUIS FEL beamline
 - High quality bunches for FEL
 - L2 DUHA: 3 J, 25 fs @ 50 Hz OPCPA

Thanks to: Daniele Margarone (ELI BL)

11

attosecond Attosecond Light Pulse Source (ALPS)

delivered on Zebrafish embryos

Simon Hooker AAC24, Naperville, USA July 2024

Thanks to: Christos Kamperides (ELI-ALPS), Zulfikar Najmudin (Imperial College London)

[a] Large PIC simulation Data set

Low fidelity random scan using fast PIC simulations Design optimisation of LPI source parameters Surrogate model (DNN, XGboost, stacking, GP, BO) Open data

[b] Data acquisition development

deployment Open data

PIA3-ANR, CNRS-IN2P3, Université Paris Saclay, EuPRAXIA-PP and CPER

Concept

- Timestamped data in archived in HDB++ timeScaledB Distributed control command (Tango Controls) ease
- Development of device server specific for LPA/LPI [9]

- Test facility for LPA injector optimization
- High quality beam, control & reliability
- Target: 10 Hz, 150 250 MeV, 10 - 100 pC, dE < 5%
- Budget ~ €2.3M
- Timeline:
 - 2024: commissioning @ 1 Hz
 - 2026: Fully controlled & optimized LPI @ 10 Hz

- LUX beamline has demonstrated
 - Stable operation @ 1 Hz over > 24 hours
 - ML-assisted active stabilization
 - Automatic, ML-assisted tuning

References Maier *et al., Phys. Rev. X* **10** 031039 (2020) Kirchen et al. Phys. Rev. Lett. **126** 174801 (2021) Jalas et al. Phys. Rev. Lett. **126** 104801 (2021)

- LUX beamline has demonstrated
 - Stable operation @ 1 Hz over > 24 hours
 - ML-assisted active stabilization
 - Automatic, ML-assisted tuning

References Maier *et al., Phys. Rev. X* **10** 031039 (2020) Kirchen et al. Phys. Rev. Lett. **126** 174801 (2021) Jalas et al. Phys. Rev. Lett. **126** 104801 (2021)

DESY "Moonshot": Plasma injector for PETRA IV

Concept

UNIVERSITY OF

- Chicane + X-band RF dechirper stabilizes bunch energy
- S2E sims show energy spread & jitter can be reduced by factor 10
- Next steps, PETRA IV pre-project:
 - Demonstrate laser tech capable of 24/7 operation at 99% availability
 - Demonstrate plasma injector at 450 MeV for PETRA III (with 6 GeV upgrade path)

Simon Hooker AAC24, Naperville, USA uly 2024

References

Antipov *et al. Phys. Rev. Accel. Beams* **24** 111301 (2021) Ferran Pousa et al. Phys. Rev. Lett. 129 094801 (2022)

EuPRAXIA : second site

▶ 4 possible sites for EuPRAXIA LWFA-driven FEL:

- CNR, Pisa, Italy
- ELI-ERIC, Prague, Czech Republic
- CLPU, Salamanca, Spain
- EPAC, Harwell, UK
- Decision process:
 - Formal site visits completed
 - Output Decision by Collaboration Board due Feb/Mar 2025

16

Beam-driven plasma wakefield accelerators (PWFA)

- Headquarters of EuPRAXIA at SPARC_LAB, Frascati
- ► 130M investment
- New, dedicated building
- First FEL operation expected 2029

Simon Hooker AAC24, Naperville, USA July 2024

EuPRAXIA headquarters & site 1

Thanks to: Pierluigi Campana & Massimo Ferrario 18

- AQUA: soft X-ray SASE FEL, optimized for 4 nm
- ARIA: VUV-seeded HGHG FEL beamline
- Betatron source:
 - E_{crit} : 1 10 keV

EuPRAXIA site 1: radiation sources

Parameter	
Freq. (GHz)	11.9942
No. cells	112
Peak input power / structure (MHz)	70
Pout / Pin	25%
Rep. rate (Hz)	10
Driver / Witness energy before plasma (MeV)	530
Witness energy after plasma (GeV)	1.1
Driver charge (pC)	200 - 50
Witness charge (pC)	30 - 50

2
)()
J

- FLASHForward is a beamline for P research
 - ~10 kW average beam power @ MHz rate in 10 Hz bursts
- Recent results

JNIVERSITY OF

XFORI

- First direct wakefield sampling
- First energy spread preservation at 0.1% & record efficiency
- First demonstration of emittance preservation
- Plasma recovery time shown to be compatible with MHz operation

Simon Hooker AAC24, Naperville, USA uly 2024

PWFA @DESY

References

D'Arcy et al. Phil. Trans. R. Soc. A. 377 (2018) Schröder *et al. Nat. Comm.* **11** 5984 (2020) Lindstrøm et al., *Phys. Rev. Lett.* **126** 014801 (2021) D'Arcy et al. Nature 603 58 (2022) Lindstrøm et al. Nat. Comm. accepted (2024)

MODUL 6

Concept:

- Drive plasma accelerator with 400 GeV SPS proton beam
- Allows acceleration to high energies in a single stage
- Proton beam too long (~ 200 ps), so must be (self)-modulated
- Scope:
 - International collaboration of 22 institutes

Contact

Lead: Edda Gschwendtner (CERN) https://home.cern/science/accelerators/awake Web:

Thanks to: Edda Gschwendtner 21

- proton bunch with an electron bunch
- plasma distances by introducing a step in the plasma density
- Approved in June 2024!

UNIVERSITY OF

DXFORD

Run 2c (2028 - 2031): Quality — demonstrate acceleration and emittance preservation of externally injected electrons

Run 2d (2032 - LS4): Scalability — development of scalable plasma sources to 100s m length with sub-% density variation

Simon Hooker AAC24, Naperville, USA ulv 2024

• Run 2a (2021 - 2022): **Control** — demonstrate seeding of the self-modulation of the entire

Run 2b (2023 - 2024): Stabilization — maintain large wakefield amplitudes over long

•	
Parameter	Value
Norm. emittance ()	2 - 30 mm mi
<i>Q</i> (pC)	100 pC
ΔE / E	5 - 8 %
Energy gain: Run 2c	4 - 10 GeV
Energy gain: Run 2d	>10 GeV

Thanks to: Edda Gschwendtner 22

Many scientific achievements

- Electron acceleration demonstrated
- Wakefield growth due to SM observed
- Proton bunch self-modulation demonstrated
- Seeding with ionization front & electron bunch demonstrated
- Beam hosing instability investigated
- Many technological achievements
 - S-band gun with X-band accelerator
 - Rb vapour source with density step
 - 10m long discharge plasma source
 - BPMs with 10 um resolution

References

Adli et al., Nature **561** 363 (2018) Turner *et al., Phys. Rev. Lett.* **122** 054801 (2019) Adli et al., Phys. Rev. Lett. **122** 054802 (2019) Batsch et al., Phys. Rev. Lett. **126** 164802 (2021) Verra et al., Phys. Rev. Lett. **129** 024802 (2022) Nechaeva et al., Phys. Rev. Lett. **132** 075001 (2024)

AWAKE: Some highlights

CÉRN

Thanks to: Edda Gschwendtner 23

HALHF: Hybrid Asymmetric Linear Higgs Factory

Concept:

JNIVERSITY OF

- RF linac
- Reduces costs since:
 - Low e+ energy (31 GeV) -> high e- energy (500 GeV). $E_{CM} \sim 250 \text{ GeV}$
 - requirements
- Facility length ~ 3.3 km; cost ~ 25% of ILC/CLIC (~ \$1.9B @ 2022)

Simon Hooker AAC24, Naperville, USA ulv 2024

Exploit high gradient of e- acceleration in PWFA & avoid difficulty of e+ acceleration by using

Increased I(e+) and decreased I(e-); this and asymmetric emittance (larger for e-) eases PWFA

Thanks to: Brian Foster, Carl Lindstrøm, Richard D'Arcy 24

- HALHF programme is led by Carl Lindstrøm (Oslo); and Brian Foster (Oxford & DESY), and Richard D'Arcy (Oxford)
 - Aim is to design a self-consistent plasma-based electron–positron collider at the sub-TeV scale (for Higgs production)
- Current activities
 - Write "pre-CDR" (i.e. a self-consistent parameter set with a fulldetail start-to-end simulation and realistic RF accelerators, with a credible cost estimate) for the ESPP update in March 2025.
 - Monthly online expert meetings since October 2023
 - Two in-person collaboration meetings (Hamburg in Oct 2023, Oslo in April 2024), and will have another in Erice, Sicily in October 2024
 - Working on a detailed cost model to which we can apply Bayesian Optimization to produce an updated baseline

JNIVERSITY OF

References

Foster *et al.*, New J. Phys. **25** 093037 (2023) Lindstrøm *et al.* arXiv:2312.04975 (2023) Diederichs *et al.* arXiv:2403.05871 (2024)

Thanks to: Brian Foster, Carl Lindstrøm, Richard D'Arcy 25

Concept

- Drive a PWFA with e- from a LWFA
- Combines best features of LWFA & PWFA

Progress

UNIVERSITY OF

OXFORD

- nC driver beams generated
- Observation of plasma waves driven by laser-accelerated e-
- Internal (shock) injection of witness beam in PWFA stage
- Generation of stable, high-quality beams by LPWFA

AAC24, Naperville, USA

July 2024

References

Foerster *et al. Phys. Rev. X* **12** 041016 (2022)

Hybrid acceleration

Thanks to: Bernhard Hidding & Stefan Karsch 27

- Vital for plasma-based collider
- LEAP project at DESY
 - Demonstrate generation & accelation of spin-polarized electrons in a LPA
 - Source: UV ionization of Xe
- Progress
 - Spin tracking added to FBPIC & HIPACE++
 - Sims show colliding-pulse injection yields high-quality polarized beams
- Next:
 - UV source upscale
 - Pre-polarized source demo
 - Olarized LPA demo

References Bohlen *et al. Phys. Rev. Res.* **10** 35 (2021)

Thanks to: Kristjan Põder 28

- Proof-of-principle experiments at 150 TW:
 - Positrons (Bethe-Heitler process): E ~ 500 MeV; $\Delta E/E \sim 5\%$; Q = 0.2 pC; $\epsilon_n = 18 \,\mu \mathrm{m}$
 - Sufficient quality for injection into RF or plasma-based accelerator
- Simulations: could generate e+ bunches with 10 20 pC, 5% BW around 1 GeV, 30 fs, from nC electron bunches produced by PW-scale lasers
- Positron beamlines:

JNIVERSITY OF

- Being designed for Frascati (EuPRAXIA) and EPAC
- Being investigated for plasma-based future upgrades to HALHF concept

Simon Hooker AAC24, Naperville, USA ulv 2024

Acceleration of positrons

References Streeter *et al. Sci. Rep.* **14** 6001 (2024)

Thanks to: Gianluca Sarri 29

%	
, 2	
, 2	
, 2	
)	

There is a significant effort to improve simulation tools

- Significant effort to ensure compatibility with new exascale HPC architectures.
- Some recent development highlights include:

- Developing ionisation models (collisional); brems. & NCS radiation
- Cylindrical mode w/ azimuthal decomposition now available
- EPOCH++: porting from FORTRAN to C++; adding GPU support via Kokkos — first release expected October 2025

Smilei) https://smileipic.github.io/Smilei/

- Strong-field QED; atomic physics processes; advanced laser field injectors
- Laser envelope model (w/ ionisation) in all geometries w/ PML
- Smilei v5.0: NVIDIA & AMD GPU support available (2D & 3D cartesian)
- Continuing to port additional physics modules and advanced solvers to GPU

Simon Hooker AAC24, Naperville, USA uly 2024

JNIVERSITY OF

XFOR]

OSITIS 4.0

https://osiris-code.github.io/

- Coherent/incoherent radiation modelling; final-focus collisions \bullet
- Single socket version for all exascale architectures available; CPU/GPU/FPGA
- MPI implementation for all architectures expected operational by Q1 2025

WakeT https://wake-t.readthedocs.io/

- Rapid axisymmetric simulations; laser- or beam-driven
- Recently added adaptive grid and ion motion
- Python implementation seconds/minutes on a laptop
- Multi-physics models coming soon.

HiPACE++ https://hipace.readthedocs.io/

- 3D quasi-static PIC code
- Recently added mesh refinement; laser envelope solver; multi-physics including radiation reaction, spin tracking and binary collisions
- Written in C++ w/ NVIDIA & AMD GPU support •
- Ongoing optimisation work, adding new physics processes soon

Thanks to: Tony Arber, Arnaud Beck, James Chappell, Luis Silva, Maxence Thevenet 30

There is a significant effort to improve simulation tools

40

- Developing a suite of tools for **multi-physics** start-to-end studies, including:
 - Simulations beyond wakefield interaction (beam transport, plasma source design....)
 - Development of tools to allow more representative inputs
 - Consistent input/output format (e.g. OpenPMD) enables "handshaking" between codes
 - Scalable ensembles and optimisation studies

Simon Hooker AAC24, Naperville, USA ulv 2024

JNIVERSITY OF

- Bayesian optimisation experiments and simulations
- Highly scalable parallel optimisation

Thanks to: Tony Arber, Arnaud Beck, James Chappell, Luis Silva, Maxence Thevenet 31

Coordination

EúPRA **AIX**

EuPRAXIA project

• Key player in coordinating ANA research with applications to compact light sources

Advanced LinEar collider study GRoup

- Open to scientists worldwide
- Reports to ICFA ANA
- 8 working groups
- Meets ~ annually

Simon Hooker AAC24, Naperville, USA ulv 2024

Laboratory Directors' Group

- Directors of labs with national role in accel., PP or detector research
- Currently: LNF, LNGS, CEA), IJCLab, DESY, PSI, NIKHEF, CIEMAT, STFC, CERN (DG + observers)
- LDG chair (Dave Newbold) is ex-officio member of Strategy Secretariat & invited to strategy discussions at **CERN** Council

2020: Update of European Strategy for Particle Physics (ESPP)

- "The European particle physics community must intensify accelerator R&D and sustain it with adequate resources."
- "The technologies under consideration include ... plasma wakefield acceleration and other highgradient accelerating structures"
- 2021: Laboratory Directors' Group (LDG) mandated by CERN Council to oversee development of roadmaps in 5 areas incl. "High-gradient plasma and laser accelerators"
- 2021: Meetings of expert panels (Jan July)

Timeline

2020 UPDATE OF THE EUROPEAN STRATEC FOR PARTICLE PHYSICS

y the European Strategy Group

2022: Roadmaps published. "High gradient" roadmap:

- 7 Work Packages
- 9 Deliverables

Deliverable	Da
Report: Electron high energy case study (175 - 190 GeV)	June
Report: Physics case of an advanced collider	June
Report: Positron high energy case study	June
Report: Low energy study case for electrons & positrons (15 - 50 GeV)	June
Report: Pre-CDR and collider feasibility report	Dec. 2
Expt: High-repetition-rate (laser) plasma accelerator module (kHz)	Dec. 2
Expt: High-efficiency electron/proton-driven plasma accelerator with high beam quality	Dec 2
Report / prototyping: Scaling of DLA/THz accelerators	Dec. 2
Report: spin-polarized beams in plasma accelerators	Dec. 2

Timeline

- 2022: Roadmaps published. "High gradient" roadmap:
 - 7 Work Packages
 - 9 Deliverables
- 2023 & 2024: Additional community meetings
 - ALEGRO workshops
 - Frascati, July 2023
 - Output Deliverables refined
 - "Aspirational" timeline developed
 - "Indicative" funding developed
 - HALHF concept adopted as strawperson design for Pre-CDR

Resou

Post-docs (62 Consumables Meetings & Computing r Access to fact TOTAL

Simon Hooker AAC24, Naperville, USA July 2024

Timeline

Deliverable	Da
ron high energy case study (175 - 190 GeV)	June
ics case of an advanced collider	June
ron high energy case study	June
energy study case for electrons & positrons (15 - 50 GeV)	June
CDR and collider feasibility report	Dec. 2
epetition-rate (laser) plasma accelerator module (kHz)	Dec. 2
fficiency electron/proton-driven plasma accelerator with high beam quality	Dec 2
totyping: Scaling of DLA/THz accelerators	Dec. 2
polarized beams in plasma accelerators	Dec. 2

Irce	Cost (€k)
2.5 FTE)	6,250
S	200
	100
resources	100
rilities	50
	6,700

	66 A 9	spira	tio	nal" ti	me	line	
Single-stage accelerators (proton-driven)	0–10 years Demonstration of: Preserved beam quality, acceleration in very long plasmas, plasma uniformity (longitudinal & transverse)		10–20 years			20–30 years	
			Dark-photon search, strong-field QED experiment, etc. (50–200 GeV e ⁻)		(Facility upgrade)	HEP facil of constr	
			Demonstration of: Use of LHC beams, TeV acceleration, beam delivery		Energy-frontier collider 10 TeV c.o.m. electron-proton co		
			Time	line (approximate/aspirat	ional)		
	0–5 years	5–10 yea	rs	10–15 years	15	–25 years	25+ yea
Multistage accelerators dectron-driven or laser-driven)		Demonstrati Scalable staging, driv stabilisation (active		Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e-)	(Facility u	ograde)	Feasibility R&D (exp. HEP facility
	Simulation study	Demonstration of: Higg High wall-plug efficiency (e ⁻ drivers), preserved beam quality & spin polarization, high rep. rate, plasma temporal uniformity & cell cooling Asymmetric collider		Higgs factory (HALHF) Asymmetric, plasma–BE bybrid		of construct	
	self-consistent parameters			collider (2	250–380 GeV c.o.m.)	(Facility upgrade)	
	(demonstration goals)	Demonstration of: Energy-efficient positron acceleration in plasma, high wall-plug efficiency (la ultra-low emittances, energy recovery schemes, compact beam-delivery		aser drivers), v systems	Multi-TeV e+-e-/ Symmetric, all-pla collider (> 2 Te		

These resources remain aspirational!

- New facilities are coming on-stream, with internationally competitive capabilities
 - ELI ERIC

 - EuPRAXIA beamlines
- Applications of advanced accelerators being explored intensively

 - Plasma injector for synchrotrons (DESY)
- Research is coordinated through formal & informal structures
 - EuPRAXIA
 - ESPP
 - ALEGRO

There is a very wide range of research activities in Europe on advanced accelerator concepts

Thanks to the following for their input & advice

- Tony Arber (Warwick, UK) Arnaud Beck (INPNPP & LLR, FR) Pierluigi Campana (INFN, IT) Kevin Cassou (Paris-Saclay, FR) James Chappell (Oxford, UK) Richard D'Arcy (Oxford, UK) igodolMassimo Ferrario (INFN, IT) Edda Gschwendtner (CERN, CH) Brian Foster (Oxford, UK & DESY, DE) Bernhard Hidding (Düsseldorf, DE) Steven Jamison (Lancaster, UK) Christos Kamperidis (ELI-ALPS, HU) Wim Leemans (DESY, DE) \bigcirc Carl Lindstrøm (Oslo, NO) Daniele Margarone (ELI-Beamlines, CZ) \bigcirc Stuart Morris (Warwick, UK)
- Zulfikar Najmudin (Imperial College London, UK)
- Rajeev Pattathil (RAL, UK)

Post-doc opportunities! We have funding for TWO post-doc positions to work on these & related topics

Please contact me if you'd like to discuss these further

BO X

simon.hooker@physics.ox.ac.uk

Kristjan Põder (DESY, DE) Gianluca Sarri (QUB, UK) Luis Silva (IST, PT) Maxence Thévenet (DESY, DE)

