Latest Results on PWFA
Experiments from FACET-II
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What is FACET-1I? @ FACETMI[fiyirpdvnced et

e FACET-Il is a national User Facility operated by SLAC and funded by DOE that provides a
unique capability for developing advanced acceleration and coherent radiation generation
techniques using a high-energy electron beam.
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2 nC, low emittance (10s um), small energy spread (<1%)

 Has been operated with the single bunch configuration since 2022
e Started two-bunch configuration in May, 2024
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Plasma wakefield acceleration (PWFA) and the E300 experiment
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e E300 aims at demonstrating a

5 single stage 10 GeV PWFA
e Energy doubling in <1 m
4 e 10 GeV—>20 GeV
 Narrow energy spread
3 e <1%
€ Preserving emittance
|,=  eafewum

e High efficiency

| 1 e Driver to witness >40%

e Driver to wake 80%
0 e \Wake to witness 50%



Highlights of the results
UCLA

* Repetition Single-stage 10 GeV PWFA
e Meter-scale plasmas in hydrogen, needed for high rep rate future work have been formed

o Efficiency

e Pump depletion of the 10 GeV drive beam accomplished

e Driver-to-wake energy transfer efficiency without beam-shaping has been measured

e |ntroduced machine learning to optimize experimental outcomes faster
e Matching

 Preliminary data obtained on the matching of a single beam to the high density plasma wake
e Two-bunch (2 GeV energy gain)

e |onization injection High-brightness beam generation
e multi-GeV, multi-color, potential um-nm scale current modulation
e Downramp injection

e up to 26 GeV, ~1% energy spread, a few um emittance, brightness booster



Experimental setup

~4 meters between Be windows

focusing
quads

continuous flow gas
Li oven

v R T

beam direction

>

i | 8

O.56m>!4 1.26m >!

topview sideview1 sideview2

switch between Li oven and bypass line

spectrometer

quads dipole

= & -_'
Z

electron detector x-ray detector

dump table

UCLA

e e- beam: 10 GeV, 1-1.6 nC, 50 cm beta function at the IP, ~50 um emittance, 20-50 um spot size,
>20 um bunch length (with >30 kA current spikes)

e plasma:

e beam or laser-ionized lithium vapor bounded by helium gas

e beam or laser ionized continuous flow of H2/He gas isolated by differential pumping system

e Main diagnostics: imaging spectrometer, x-ray intensity profile monitor and spectrometer, visible
plasma light at various locations



lonization and wake generation in a meter-scale hydrogen plasma,
evidence of pump energy depletion, and energy transfer efficiency

why hydrogen?
e Future colliders will need to operate at kHz or greater rep rates.

e At 1 TeV (CM) beams will contain ~5 MW of average power. Assuming 50% efficiency
this means 2.5 MW will be left behind in a thin plasma column.

e This will rapidly heat the gas and create a time dependent density depression on axis.

 The plasma medium will have to be created in a refreshed gas. H2 is the natural
choice due to its low and simple ionization energy levels.

e We first ionize H2 and excite a wake using the transverse field of the drive beam -
need a peak current of 30 kA (for a 30 um spot size).



The FACET-Il compressors can produce 100 kA peak current beams

UCLA
Current profiles from beamline Meter-scale plasma generation
simulation (by C. Emma) (in 2.0 Torr Hydrogen)
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very different.
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C. Zhang et al, PPCF 66, 025013 (2024)




Drive beam energy depletion in 1.5 Torr H2 gas (~5e16 cm-3) -

e 1.5 nC driver. Spectrometer setting: lower dipole strength + imaging energy at 2 GeV
e <2 GeV electrons recorded
e In 73 out of 100 shots, the charge of <3 GeV electrons exceed 100 pC

waterfall plqct of linearized energy spectra
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Driver to wake energy transfer efficiency in meter-scale H2 plasma B'-CI‘Z

80+
_ e Achieved 60% beam-to-wake energy transfer
iGO ' efficiency (excluding non-participating charge)
%) 4
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e Spectrometer captures >5 GeV electrons
e Max energy loss < 5 GeV, no missing charge, calculate deposited energy directly
e Max energy loss > 5 GeV, with missing charge, estimate upper and lower bounds
 Red point: using a dataset where 2-8 GeV signals are available C. Zhang et al, PPCF 66, 025013 (2024) 10



Machine learning enabled PWFA optimization in 40-cm Li plasma

UCLA
Energy loss Energy transfer efficiency
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See Robert Ariniello’s talk in WG3 on Tue.




First experiments on beam matching to a Li density upramp (ongoing work)

e Many parameters can affect matching
e beam emittance, beta
e vacuum waist location
e density upramp profile

e actual density at the vacuum focus
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Effects of beta and waist location on matching

spot size evolution for matched

vs. unmatched beam
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spot size evolution for beams with 10 cm
beta, focused at different waist locations
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Effects waist location on matching- simulations

UCLA
£, = 63 um, single bunch, scan waist location (PIC simulation + beam transport)
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Experimental evidence of (hon-optimal) matching

UCLA
™10 . — .
25 cm beta, quads @ 4 GeV g — Mellum bulfer gas
: : : : = 5} i
scanning waist location in 12.5 cm steps =
qc) O 1 1
/ S 0 f 10 30 40
12} 12 . R F
11F 111t :
10} 110}
oF 1 9t
8t 1 8}
7t 17¢
>
é 6} 16}
>
o0
5 5p 1 5}
-
LLl
flemmmm=-- R EEEEEE R EEEE TEEE EEEE PIEEEE CEEE R TR -
2IO 4IO 6IO 2IO 4IO 6IO 2IO | 6IO 2IO IO 6IO 2IO .4IO 6IO 2IO 4IO 6IO 2IO 4IO 6IO 2IO 4IO 6IO
X [mm] X [mm] X [mm] X [mm] X [mm] X [mm] X [mm] X [mm]

The next step iIs to reduce beta to
approach optimal matching

Energy loss increase and narrowing of the
beam slices as matching is approached

15



First two-bunch operation!
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Preliminary results on two-bunch PWFA

UCLA
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Beam quality of the accelerated witness bunch

UCLA
See Doug Storey’s talk in WG3 on Tue. | sovase| ) [oroazes |
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lonization injection and downramp injection
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A. Pak et al, PRL 104, 025003 (2010) X. L. Xu et al, PRAB 20, 111303 (2017)

Both mechanisms have the potential of generating ultralow emittance (<1 um), high brightness
(>101? A rad-2 m-2) electron bunches for near-term applications such as driving free electron lasers. {4



lonization injection of helium electrons in lithium plasma wake UCLA

Over-compressed beam results in a double-horn current profile. As the second horn pinches, it can
lonized the helium buffer gas at both ends of the lithium oven, leading to ionization injection.

Mean Energy = 10.093 GeV

-
O

| —Eﬂ: e | Osiris-q3d simulation using the following e- beam parameters:
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each time the second current spike pinches, it triggers ionization injection of helium e- once 20



Injected electrons with multiple energy peaks (simulation)
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multi-GeV, almost equally spaced energy peaks
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Generation of multi-GeV, multi-color beams in experiment

The injected charge

eappears as distinct beamlets due to multiple ionization injections

eis accelerated to multi-GeV (<6 GeV)
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High brightness beam generation via downramp injection

downramp injection

4 Torr H2 static fill, gas jet backing pressure 100 psi

/ den5|ty

10 GeV driver =84 downramp
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.
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An example dataset showing >20 GeV energy gain
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Sub 1% energy spread

UCLA
shot 87 Injected bunch:
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Energy gain up to 26 GeV with ~1% energy spread

UCLA
E304_08878, shot 146 Injected bunch:
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1m level normalized emittance measured using the butterfly technique

1173 GeV, dE(FWHM)=0.17 GeV, 1%
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PWFA as a beam brightness booster

UCLA
Collider, light source and many other applications require high brightness beams
peak current [e.g. kA]
| ) L
Brightness: 5, = —
€n \
normalized emittance squared [um?]
drive beam: 'Imicktzd beam: SXFEL: LCLS:
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¢, ~40 pum En~ L Mrlfl _ €,~1.5 um €,~1.6 um
B ~1013 A/rad2/m? ?8~6|3X-1(:]t A/rad2/m B,~6x101 A/rad2/m?2 B ~3x1015 A/rad2/m?
10 GeV e 1.5 GeV (upgrade) 13.6 GeV (hard x-ray)

<7 GeV (soft x-ray)
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1AL

Summary: highlights of the first results D-C?Z
e Repetition Single-stage 10 GeV PWFA

e Meter-scale plasmas in hydrogen, needed for high rep rate future work have been formed
o Efficiency

e Pump depletion of the 10 GeV drive beam accomplished

e Driver-to-wake energy transfer efficiency without beam-shaping has been measured

e |ntroduced machine learning to optimize experimental outcomes faster
e Matching

 Preliminary data obtained on the matching of a single beam to the high density plasma wake
e Two-bunch (2 GeV energy gain)

e |onization injection High-brightness beam generation
e multi-GeV, multi-color, potential um-nm scale current modulation
e Downramp injection

e up to 26 GeV, <1% energy spread, a few um emittance, brightness booster
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