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Background

Start with the Low Lagrangian

Macro-particle reduction:

f (r p t) =
X

w S(r - ) (p - m )

Continuous space and time.

Retain energy and momentum conservation and gauge invariance.

Ultimately would like a canonical Hamiltonian system. Use standard symplectic methods.

Want a gridded representation of the fields for computational performance.

Same reduction can be performed in the non-canonical Vlasov–Maxwell bracket.

A basis expansion of E and B seems necessary.

For a Fourier representation of the fields, both methods give the same dynamics.
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Why Should You Care?

We want to preserve as much structure of the system consistent with a macro-particle

approximation.

Artifacts can pollute results.

Identifying and removing unphysical artifacts is time consuming and difficult.

In a computer almost everything looks like plasma physics.
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Background: Low Lagrangian

Relativistic Low Lagrangian
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r(t ; r v) and v(t ; r v) are the electron position and velocity, with

r(t = 0 r v) = r
v(t = 0 r v) = v

f0(r v) is the initial electron phase space distribution.

Variation of the Lagrangian yields equations for particle orbits (characteristics of the Vlasov

equation) and field equations.
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Background: Lagrangian Reduction

Macro-particles:

f (r p t) =
X

w S(r - ) (v - )

Reduced Lagrangian:
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Background: Lagrangian Reduction

Equations of motion
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Poisson’s equation implies

E = 4

There is a constraint on the momentum conjugate to A:

A =
L

tA
=

E
4 c2

giving A =
c2



page.14

Momentum Conservation

Variational model will only conserve momentum in an average sense.

The electrostatic Birdsall & Langdon algorithm conserves total momentum.

The electromagnetic algorithm exactly conserves charge (with Villasenor & Buneman or

Esirkepov).

Total momentum (particle and field) is not conserved.

Surprising? Analytically, charge conservation implies momentum conservation.

Standard PIC discretization breaks this connection.
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Momentum Conservation

Example: Non-Relativistic Weibel Instability

Initial distribution

f0(x vx vz) =
1
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Initial potential

Ax =
k

cos(k z)

Parameters: k = 1 25 kp, = -10-4, x = 12 z , z = c (50 2).

Domain: 0 z
2

k
.
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Example: Non-Relativistic Weibel Instability Fields
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Example: Non-Relativistic Weibel Instability Momentum
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Canonical Hamiltonian

We can perform a Legendre transformation to obtain a canonical Hamiltonian.

The momentum conjugate to A is constrained (Gauss’ Law).

Add this constraint to the Hamiltonian with a Lagrange multiplier.

In continuous space this is the same system as obtained from the noncanonical Hamiltonian.

Using a grid for the fields, we can obtain a canonical Hamiltonian system (with a constraint).

Standard symplectic methods can be used on the combined macro-particle and field phase

space.
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Summary

The non-canonical and Lagrangian formulations are identical once macro-particles are

introduced.

A truncated Fourier basis representation of the potentials preserves gauge invariance, the

continuity equation and momentum conservation. This has significant computational

performance limitations but can be used for benchmarking.

Charge conservation can be restored by imposing a constraint.

This leads to the same canonical Hamiltonian system as obtained from the noncanonical

formulation.
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Example: Non-Relativistic Weibel Instability Fields
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Example: Non-Relativistic Weibel Instability Momentum


