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Background
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Start with the Low Lagrangian
Macro-particle reduction:
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Continuous space and time.

Retain energy and momentum conservation and gauge invariance.

Ultimately would like a canonical Hamiltonian system. Use standard symplectic methods.
Want a gridded representation of the fields for computational performance.

Same reduction can be performed in the non-canonical Vlasov—Maxwell bracket.

A basis expansion of E and B seems necessary.

For a Fourier representation of the fields, both methods give the same dynamics.



Why Should You Care?

» We want to preserve as much structure of the system consistent with a macro-particle
approximation.

» Artifacts can pollute results.
» Identifying and removing unphysical artifacts is time consuming and difficult.
» In a computer almost everything looks like plasma physics.



Background: Low Lagrangian

» Relativistic Low Lagrangian
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» r(t;7, V) and v(t;F, V) are the electron position and velocity, with

r(t )
v(t )
» f(F, V) is the initial electron phase space distribution.

» Variation of the Lagrangian yields equations for particle orbits (characteristics of the Vlasov
equation) and field equations.
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Background: Lagrangian Reduction

» Macro-particles:

f(r,p,t) Zwa

» Reduced Lagrangian:
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Background: Lagrangian Reduction

» Equations of motion
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» Poisson’s equation implies

V-E=4np

» There is a constraint on the momentum conjugate to A:
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Momentum Conservation

» Variational model will only conserve momentum in an average sense.

» The electrostatic Birdsall & Langdon algorithm conserves total momentum.

» The electromagnetic algorithm exactly conserves charge (with Villasenor & Buneman or
Esirkepov).

» Total momentum (particle and field) is not conserved.

» Surprising? Analytically, charge conservation implies momentum conservation.

» Standard PIC discretization breaks this connection.



Momentum Conservation

Example: Non-Relativistic Weibel Instability

» Initial distribution
V2
fo(X, vy, Vz) = p—— exp ( U’)é) exp (2 23)
» Initial potential
Ay = % cos(k z).
» Parameters: k = 1.25k,, B = —107%, oy = 120, 0, = ¢/(50V/2).
» Domain: 0 < z < 2.



Example: Non-Relativistic Weibel Instability Fields
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Example: Non-Relativistic Weibel Instability Momentum

Particle
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Canonical Hamiltonian
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We can perform a Legendre transformation to obtain a canonical Hamiltonian.

The momentum conjugate to A is constrained (Gauss’ Law).

Add this constraint to the Hamiltonian with a Lagrange multiplier.

In continuous space this is the same system as obtained from the noncanonical Hamiltonian.
Using a grid for the fields, we can obtain a canonical Hamiltonian system (with a constraint).

Standard symplectic methods can be used on the combined macro-particle and field phase
space.



Summary

» The non-canonical and Lagrangian formulations are identical once macro-particles are
introduced.

» A truncated Fourier basis representation of the potentials preserves gauge invariance, the
continuity equation and momentum conservation. This has significant computational
performance limitations but can be used for benchmarking.

» Charge conservation can be restored by imposing a constraint.

» This leads to the same canonical Hamiltonian system as obtained from the noncanonical
formulation.



Example: Non-Relativistic Weibel Instability Fields
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Example: Non-Relativistic Weibel Instability Momentum

Particle
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