Data-Driven Modeling for Wakefield Colliders —
New Capabilities for Integrated RF & Wakefield Modeling in BLAST
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Abstract (12' + 3' Q&A)

Kinetic simulations of relativistic, charged particle beams and advanced plasma accelerator elements are often
performed with high-fidelity particle-in-cell simulations, some of which fill the largest GPU supercomputers.
Self-consistent modeling of wakefield accelerators for colliders includes many elements beyond plasma
acceleration. The integrated Beam, Plasma & Accelerator Simulation Toolkit (BLAST) provides high-performance
simulation codes suitable to model different parts of a beamline on the latest and world’s largest GPU
supercomputers. Yet, for some workflows such as start-to-end modeling and coupling with experimental
operations (digital twins), it is desirable to integrate and model all accelerator elements with very fast, effective

models. Traditionally, analytical and reduced-physics models fill this role, usually at a cost of lower fidelity and/or
reduced dynamics.

Here, we show that the vast data from high-fidelity simulations and the power of GPU-accelerated
computation open a new opportunity to complement traditional modeling: data-driven surrogate modeling
through machine learning (ML). We present the new capabilities for fully GPU-accelerated, in-the-loop ML
workflows in BLAST and how they complement and fill a need alongside first-principles modeling and reduced
models and pair well with recently established out-of-the-loop machine-learning workflows (i.e., optimization). We
demonstrate that the high-quality data from WarpX simulations can train low-error surrogate data models, which
are seamlessly integrated into a GPU beamline simulation using ImpactX, with the purpose of minimizing

chromatic emittance growth during acceleration and transport in a staged laser-wakefield accelerator of
low beam charge.



Approaches to wakefield collider modeling

theoretical, first-principle & reduced physics simulation, data

BLAST Codes for Accelerator Modeling
Exascale & ML Technology in WarpX and ImpactX

Staging of LWFA for future HEP colliders

Hybrid beamlines: plasma & transport modeling, ML integration & evaluation
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Level of Realism: 50 multi-GeV Stages Modeled in 3D

first 3D simulation of a chain of 50 plasma accelerator stages
1

stage number
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LWFA lattice: Electron beam: -
« Plasma channels: 28cm . Charge: -1 fC E 300 =
* Gaps: 3cm « Size:0.75umx0.75 <
« Plasma lens model: linear um x 0.1 um B =S
thick lens (3 mm) w/ Emittance: 1 mm.mrad &
residence correction E 2007 Relative energy spread:
U
_ _ flat at 0.005% after few stages
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J-L Vay et al., WarpX MS FY23.1 and FY23.2 (2023); work in collaboration with 0 2 4 6 8 10 12 14

A Ferran Pousa (DESY):; A Ferran Pousa et al., IPAC23 (2023) DOI:10.18429/JACoW-IPAC2023-TUPAQ93

Acceleration distance (m) 4



Approaches to Wakefield Collider Modeling

For theoretical modeling of complex, nonlinear many-body systems such as a collider we develop and
evaluate that have the following characteristics - and appear to do at best two of those well:

speed

first principle

dCcuracy simulation

level of detail

Is data-driven modeling via machine-learning surrogates accurate and fast enough for
e collider design: optimization and/or
e collider operations: digital twins ?




BLAST Codes for Accelerator Modeling
Exascale & ML Technology in WarpX and ImpactX

BLAST
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Open Source Community Codes by Features
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Augmenting & GPU-accelerating PIC Simulations & ML Models

GPU Workflows are blazingly fast Compatible ecosystem between:

e first-principle models: PIC simulations
e data-driven models: machine learning
We augmented & accelerated on-GPU MB’M'ASOIMQO
PIC simulations with on-GPU ML models!
fields & /\ particles

from impactx import ImpactXParIter ? N u m ba —= —— O PyTOFCh
tmport torch tensors arrays
S
for pti in ImpactXParIter(...): .0&.”0'.':',' CuI:’y
soa = pti.soa().to_xp() WiZea

X = soa.real["x"]

Persistent GPU data placement

data_arr = torch.tensor(
stack([x, y, t, px, py, ptl, axis=1),

device=deviie) e read+write access, no CPU transfer

dtype=torch.float64,

)

with torch.no_grad():
surrogate_model(data_arr)

Cross-Ecosystem, In Situ Coupling:
Consortium for Python Data API
Standards data-apis.org




Staging of LWFA for
future HEP colliders

Hybrid beamlines: plasma & transport modeling,
ML integration & evaluation



LPA surrogate models bridge runtime gap

Our goal is to find better transport: Combine Plasma & RF Accelerator Elements for start-to-end modeling

e high-quality plasma simulation can

be expensive
P s
- laser TRRR = O 15 stages: 1,316 A100 GPUhrs
electron \Pulse . N
bunch O 3D electromagnetic, fully kinetic,
stage 1 plasma column  transport stage 2 plasma column 128x128x35328 cells
hours < second hours e optimization challenge
o usually 1000s of runs (derivative-free)
tightly-coupled LPA-neural networks inside ImpactX o repeated evaluation in 3D would be
very expensive
W - W o approach: specialized replacements
ele;ro-n» % % % o in situ coupling of ImpactX simulation
bunch = with data-driven surrogates
stage 1 surrogate ~ transport  stage 2 surrogate o train surrogate models from high-quality
< second < second < second WarpX data

Related works (CPU): Edelen et al. (2020), Djordjevic et al. (2021), Koser et al. (2022), Badiali et al. (2022)
Concurrent work (1 GPU, differentiable), NN model integration: J Kaiser et al., Phys. Rev. Accel. Beams 27, 054601, May 28th (2024) T



Surrogate models learn initial » final phase space map from

LPA stage data generated by a high-fidelity WarpX simulation

Y Initial — final
phase space
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Surrogate model: Generic Transport Map
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RT Sandberg et al., WEPA101, IPAC23 (2023)

Stages 1-3:
Stages 4-15:

5 hidden layers, 900 nodes per layer
3 hidden layers, 700 nodes per layer
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Surrogate models learn initial » final phase space map from

LPA stage data generated by a high-fidelity WarpX simulation

() Surrogate model: Generic Transport Map Training Data
" : . eneration with WarpX
) Initial — final supports beams with stageg. 1 plasma column P
Dz phase space t/arbitrary profiles : 15 e 15 diluted beams
i@:/ | f R6 R6 v chromatic effects - e 404 A100 GPUhrs
) : ®
} - 10 (once!)
@
© initial x-px final X-pX_ p
@ 50 . 55 - T -.,._‘: . -
g & o] '.'. g o] 3 : 5
= . : - ; >
S o T | | ™ | Notes: =
E = xam ™ sem e intentional choice 3 o2
§ 2.5_1e3 initia.l‘z.—p.Jz 1es final z-pz ® very easy to mod|fy '
o ' | 2R models from Python \ ,’/ —
% 5 20]- | a5 e ideal ground for ML -_> aser U
X 15| v S5 : model development 15 electron  \PU/S€,
-110 -100 40 50 bunches

z (um) Z (um)

RT Sandberg et al., WEPA101, IPAC23 (2023) plasma column
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Evaluation: Synthesis of ImpactX and

WarpX-trained surrog

ate models
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y [um]

ImpactX+WarpX surrogate agrees with WarpX reference

after 15 stages
| | |

-

15th stage, ct=4.62e+00

Black: WarpX reference
Red: ImpactX+surrogate

0.5 .. i Relative errors in beam moments
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Note: NN inference needs
significant memory. Surrogates of
15 stages did fit into 80GB A100
GPU memory.

time (s)

ImpactX with WarpX-trained

surrogates:

2-4 simulations / second!

103 particles
Stage 15 Push
Inference

Data Preparation

Time (ms)

2.77

0.77

2.00

100

27.8

72.2

10 -

Modeling + ML Inference are fully GPU accelerated,
approaches linear strong scaling in number of particles

15

strong scaling of ImpactX+15 NN surrogates

0.5

% of push

5 .

Nmpactx with WarpX-trained
surrogates: 10 GPU sec

for 15 stages

---- linear scaling
e total run time
time in surrogates
° @ .
™ 264 ms
100 104 105

number of particles

108

10’ particles
Stage 15 Push
Inference

Data Preparation

Time (ms)
495

477

18

% of push

100
96.4

3.6

' GPU inference time: 63ns / particle / stage |

ImpactX tracking >1M particles
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Rapid Optimization with Surrogates: Results Transfer to 3D WarpX

Central BLAST Code Interoperability: Combine Plasma & RF Accelerator Elements for start-to-end modeling
high-quality, first-principle WarpX data used for ImpactX ML surrogate training

14 15

5 | | | e | | e e e |

LPA + Transport Optimization
/rocer E / next with =1000 evaluations
O-»( ~ S laser | mlipe
electron  \PU/S€, \pulse 4 o
bunch = — O O
1.04- O OO0
stage 1 plasma column  transport stage 2 plasma column .
£
= 5 O O o WarpX start-to-end
. .. x +-U3] from best theory
tightly-coupled LPA-neural networks inside ImpactX v O _ optimized ImpactX with
o — S 1.02- WarpX-trained NNs
© 1.
- Neural = Neural = B g Waplishatiloend
bunch O ® é®®®®®®® ® ® g ®
stage 1 surrogate transport  stage 2 surrogate , , ,
0 1 2 3 4
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=752x estimated cost savings with

in-the-loop ML optimization workflow

Previously (Estimate)

Optimization with in-the-loop
ML surrogate model

1500 GPU hours simulation
x 1000 iterations

+ 1500 GPU hours validation simulation

=1 501 500 GPU hours

450 GPU hours training simulation
+ 3 GPU hours PyTorch training
x 15 stages

+ 10 GPU seconds ImpactX+NN
x 1000 iterations

+ 1500 GPU hours validation simulation

=1 998 GPU hours
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In-the-loop Machine Learning Surrogates

Beyond Single-Particle Tracking Maps

« R°®°—R®surrogate: intentional choice, for the detailed study of chromatic effects

o

o

high level of detail, arbitrary low-charge phase spaces, conserves the phase of each particle
drop-in replacement for single-particle, first-principle models

Examples to include collective effects in ML surrogates:
o “\, double down: trajectory + collective beam parameters R%*"—R%*™

O

O

how: expose additionally m collective beam parameters to ML model for various beam charges
note: very costly learning phase, unless constrained (e.g., only change 1D current profile)

o %P project: learn & predict phase spaces

O

O

O

O

O

O

how: learn & predict selected 2D phase spaces for various beam charges
note: less detailed; resampling loses phase, e.g., for tune calculations in rings
e.g., Emma et al, PRAB 21, 112802 (2018); Edelen et al., TUPS72, IPAC24 (2024)

simplify: work with beam moments and simpler distributions
how: learn & predict only collective beam parameters, learn simpler distributions (e.g., KV)

note: little detail; resampling loses phase, e.g., for tune calculations in rings
e.g., Edelen et al., PRAB 23, 044601 (2020); Garcia-Cardona & Scheinker, PRAB 27, 024601 (2024)

These and your own ML ideas can now easily be implemented (Python) & studied in BLAST
codes WarpX/ImpactX - see our documentation and detailed examples on how to get started %’
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A ImpactX

Code of Conduct

Acknowledge ImpactX

Users

Developers

HPC

Run ImpactX
I= Examples

Single Particle Dynamics

Space Charge

Beam Distributions

Lattice Design & Optimization
B Virtual Test Stands

Cyclotron

The "bare" linear lattice of the Fermilab
|OTA storage ring

The full nonlinear lattice of the
Fermilab |OTA storage ring

Positron Channel

B 15 Stage Laser-Plasma Accelerator
Surrogate

Run
Analyze

Visualize

In-the-loop Machine Learning Surrogates

Beyond Single-Particle Tracking Maps

#  Examples / 15 Stage Laser-Plasma Accelerator Surrogate ©) Edit on GitHub

15 Stage Laser-Plasma Accelerator Surrogate

This example models an electron beam accelerated through fifteen stages of laser-plasma
accelerators with ideal plasma lenses providing the focusing between stages. For more details, see:

* Sandberg RT, Lehe R, Mitchell C E, Garten M, Myers A, Qiang J, Vay J-L and Huebl A.
Synthesizing Particle-in-Cell Simulations Through Learning and GPU Computing for Hybrid
Particle Accelerator Beamlines. Proc. of Platform for Advanced Scientific Computing (PASC'24),
submitted, 2024. arXiv:2402.17248

* Sandberg R T, Lehe R, Mitchell C E, Garten M, Qiang J, Vay J-L and Huebl A. Hybrid Beamline
Element ML-Training for Surrogates in the ImpactX Beam-Dynamics Code. 14th International
Particle Accelerator Conference (IPAC'23), WEPA101, 2023. DOI:10.18429/JACoW-IPAC2023-
WEPA101

A schematic with more information can be seen in the figure below:

1 2 | 3 4 I 5 | 6 I 7 | 8 | 9 | 10 | 1 12 | 13 | 14 15
T—— ——
o > >
electron
i— ——
bunch

stage 1 plasma column  transport  stage 2 plasma

Fig. 10 Schematic of the 15 stages of laser-plasma accelerators.

The laser-plasma accelerator elements are modeled with neural networks as surrogates. These
networks are trained beforehand. In this example, pre-trained neural networks are downloaded
from a Zenodo archive and saved in the models directory. For more about how these neural
network surrogate models were created, see this description of a workflow for training neural

networks from WarpX simulation data.

Developers

HPC

Run WarpX
Examples

Parameters: Python (PICMI)

Parameters: Inputs File

|2 Workflows
Extend a Simulation with Python
Domain Decomposition
Visualizing a distribution mapping
Debugging the code

Generate QED lookup tables using
the standalone tool

Plot timestep duration

Predicting the Number of Guard
Cells for PSATD Simulations

Archiving

B Training a Surrogate Model from
WarpX Data

Data Cleaning

Create Normalized Dataset

Neural Network Structure

Train and Save Neural Network
7 Evaluate

Optimizing with Optimas

Output formats

#  Workflows / Training a Surrogate Model from WarpX Data ©) Edit on GitHub

Training a Surrogate Model from WarpX Data

Suppose we have a WarpX simulation that we wish to replace with a neural network surrogate
model. For example, a simulation determined by the following input script

@ Python Input for Training Simulation >

In this section we walk through a workflow for data processing and model training, using data from
this input script as an example. The simulation output is stored in an online Zenodo archive, in the

- s directory. In the example scripts provided here, the data is downloaded from
the Zenodo archive, properly formatted, and used to train a neural network. This workflow was
developed and first presented in Sandberg et al. [1], Sandberg et al. [2]. It assumes you have an up-
to-date environment with PyTorch and openPMD.

—
®

Data Cleaning

It is important to inspect the data for artifacts, to check that input/output data make sense. If we
plot the final phase space of the particle beam, shown in Fig. 18. we see outlying particles. Looking
closer at the z-pz space, we see that some particles were not trapped in the accelerating region of
the wake and have much less energy than the rest of the beam.

100 : 100] 100
g 0 g g 0 [===4 g 0 -
> ) ’ x >
-100 ) : -100 ™. -100
-100 O 100 0 50 0 50
X (um) z-0.28 m (um) z-0.28 m (um)

These and your own ML ideas can now easily be implemented (Python) & studied in BLAST
codes WarpX/ImpactX - see our documentation and detailed examples on how to get started %’
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https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html

Summary

A fast, high-fidelity, data-driven LPA staging workflow with ImpactX+surrogate models
e neural network surrogates reproduce unloaded LPA simulations with % level error
e runs in seconds — optimization workflow gets O(71000) speedup

e best ImpactX+surrogate transport parameters readily transfer to 3D WarpX simulations

o @ for 15 stages to O prior best results
00

1044 o © O0p
5 6 ¥ [ P e —— —
x 1.031 O from best theory
] O optimized ImpactX with P Neural Neural
5 1.021 ®  \WarpX-trained NNs | .
£ O n WarpX start-to-end electron m %
£ Lo1l © O0o verification bunch

T le®actas 8estiid0 stage 1 surrogate  transport  stage 2 surrogate

Established data-driven methods in BLAST codes WarpX & ImpactX

e Kinetic codes & in situ ML elements: easy to test & study new data models
e fully accelerated (GPU or CPU), fully documented

. : PR o . bring your own
e vibrant, friendly & helpful open source community - we invite you to join lattice & ML model

21



Thank you for your attention!
Try it yourself:

ECP-WarpX/WarpX
ECP-WarpX/impactX
Sher Sbirbe AMReX-Codes/pyamrex

initiative®
Paper: R. Sandberg et al., Documented example links:
PASC24 Best Paper (2024) ¢® WarpX ML training from openPMD

¢» DOI:10.1145/3659914.3659937 ¢§’ ML Surrogates in ImpactX

We acknowledge the ImpactX, WarpX, AMReX and pyAMReX open source communities for their invaluable contributions. In addition, we acknowledge and
thank Alexander Sinn and Thierry Antoun for their contributions to particle data structures. We thank Carl Schroeder, Eric Esarey, Carlo Benedetti and Davide
Terzani for discussions. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National
Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of High Energy Physics, General Accelerator R&D (GARD), under contract number DE-AC02-05CH11231. This material is
based upon work supported by the CAMPA collaboration, a project of the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research and Office of High Energy Physics, Scientific Discovery through Advanced Computing (SciDAC) program. This research was supported by the
Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing
imperative. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award HEP-ERCAP0023719.
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https://www.github.com/ECP-WarpX/WarpX
https://www.github.com/ECP-WarpX/impactX
https://github.com/AMReX-Codes/pyamrex
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://doi.org/10.1145/3659914.3659937
https://doi.org/10.1145/3659914.3659937
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
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Hyperparameter tuning indicated that relatively simple neural

networks were sufficiently accurate

: a 1st stage b 15th stage
Model of a single stage @) . (o) 4
10-1. —— training loss —— training loss
Example of neural network with three — testing loss 10=- — testing loss
hidden layers
(1) P (3) “»\ m
= 1 ”l C 1 ‘/Ii!‘:: 2
0 ‘: a ]21 ; a l_;) ; a ;:H ,‘/Af/'
—~ al! al® a'? _ LT PR N i
AR SO SEPRK S\ Number of 0 500 1000 1500 0 500 1000 1500
P al ay ) hidden nodes number of epochs seen number of epochs seen
) u_'-,“ afif’ ”?: N g min loss = 4.704e-04 ' Staqe 3 models
3 I\‘,'"L.'f’l ) * Bl -3.28 0.00011 o — nlayers =3
\ - t 6.00 390 0.00010 -‘::\::‘::\ ____________ — nlayers = 4
N al (2) (3) ::if:_i-' i) " B @ 0.00009
n ap 1y, () & g o
N J = B —3309  0.00008
Y ®© < 331 % 0.00007
Multiple hidden layers -~ 8 200 * 0.00006
(ORI w32 0.00005
o8 _
T = 600 700 800 900 : : , : : , ,
- - e nodes per layer 600 650 Z%%dezszr Ia:3yoeor 850 900
implemented in PyTorch "
« PRelLU .
« MSE loss Stages 1-3: 5 hidden layers, 900 nodes per layer
« Adam optimizer Stages 4-15: 3 hidden layers, 700 nodes per layer
24




Synthesized Simulation with Optimized Lenses

Enabled Development of an Improved Analytical Theory

1.25-

dB/dr (T/m)
(] o -
B N O
S u oS

I
N
U

s(m)

le7
®
©
/’,’.’
‘,-0’
@ @@
&8 o°
&®
1 @
2 3 4

WarpX start-to-end
from prior best theory

ImpactX with
WarpX-trained NNs

optimized ImpactX with
WarpX-trained NNs

improved theory

e before: analytically-motivated in situ tuning of lens strength
e now: automated tuning of multiple lens parameters
e enables: development & validation of new theoretical models
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Challenge Problem: Rapid Design Optimization

of Inter-Stage Transport

Goal: improve beam quality (emittance) after many (15) LPA stages
o focus beam to matching conditions of subsequent stage
o transport complex beams, e.g., with energy spread (chromaticity) without degrading beam
quality (emittance, particle loss, energy spread) ...
Task: find best interstage transport parameters including chromatic effects
o transport: plasma lens for beam focusing
o two parameters per lens: lens strength and position

1 2 4 5 6 7 8 9 10 11 12 13 14 15
a5 BER BB BB _________BR BB 2R _______BEp BB BB BB BB BB |
So &
| S
B s 2 t_
- ola - next g
P |a5|er > £l % laser | miie
clecin X : 2
bunch ~  — EERRRRRm——L B2
stage 1 plasma column  transport stage 2 plasma column
107um + 28cm + 43um 3cm 107um + 28cm + 43um

Follow-up work on achromatic transport already underway in collaboration with C Lindstrem et al., Oslo (2024) 26



WarpX is a Community Exascale Particle-in-Cell Code

Applications
laser-plasma physics,
particle accelerators, extreme
light sources, fusion devices & plasmas,

Exascale Particle-in-Cell Code
e electromagnetic or electro/magnetostatic
e PIC-fluid hybrid e time integration:

e explicit, implicit
BB = f(E,B) / \ ] =)

Gather fields Deposit

currents
/

eB=rp| Solve fields

Push
particles

International Contributors incl. private sector

r:rﬁ "1 Cea I'\ 1oa Mg . ta eu
BERKELEY LAB ss A nnnnnnnnnnnnnn TECHNOLOGIES

A/~

UR o | Py -
LLE T W\ O AVALANCHS

f;\\
=

&

Award-Winning Code & Science
PULCTS
PLASMA SIMULATION CODE WINS

2022AC GORDON BELL PRIZE
a qur Ce Berkeley Natlonal Laboratory, ARM.

S < f ACA__J] ‘ ~od Tec»-a ‘:gy ?.Nag F;EN ‘f?__' e

Iraf

Portable, Multi-Level Parallelization a
* MPI: 3D MR decomposition ‘

o dynamic load balancing mac

« GPU: CUDA, HIP and SYCL OS
« CPU: OpenMP ...

Scalable & Standardized

EXASCALE
COMPUTING
PROJECT

Desktop to HPC

 Python APls, openPMD data PMb LASY _ly

* In situ processing
« Open community ecosystem

Pan

N
‘AMReX. piCmi

Standard

BLAST

BEAM PLASMA & ACCELERAT!

J-L Vay et al., NIMA 909.12 (2018)
L Fedeli, A Huebl et al., SC22, DOI:10.1109/SC41404.2022.00008 (2022)
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ImpactX: We leverage WarpX Technology for RF Accelerator Modeling

Beam-Dynamics in Linacs, Rings, Colliders

e intense beams, long-term dynamics

e HEP science: FNAL complex evolution,
FCC-ee, FCC-hh, muon collider i

e s-based, electrostatic

Benchmarks & Validations
e 36 continuously run benchmarks
e code-to-code comparisons

250 MeV proton bunch

. . Ao,
o relative to a reference particle = s
. focusing quad
o elements: symplectic maps = ) gogMHg.zqRF )
) § .§,_5. f\ . — ox\ ﬁ 5 0.9 efocusing qua
%ﬁ; < > g‘g fv\;\\y,\r/x{\\[n\ro "\GJ\’\/O\,\/VI\/‘/AQ o ’Aw& %O.S (Lines) ImpactX
8 6 4 2 6 32 & & 8 BT T T 16 20 24 28 32 36 40 ﬁm (Points) IMPACT-Z
z[m] distance s [m] g 0.6
Advanced Numerics ol = L
. s {m
symplecgp,tpaseff ort1 IMCPéAs;-IZé I;pace charge, Performance
soon: radiative effects ( ) « order-of-magnitude perf.” from GPUs
. . 8
Triple Acceleration Approach B 6.3x
2
« GPU support 34
. . Q. 5 |
- Adaptive Mesh Refinement e

1 core 8 cores 16 cores 32cores 1A100 2 Al100

 AI/ML & Data Driven Models

C Mitchell et al., HB2023, THBP44 and TUA2I2 (2023); A Huebl et al., NAPAC22 and
AAC22 (2022); J Qiang et al., PRSTAB (2006); RD Ryne et al., ICAP2006 ICAP2006 (2006) gty N 28




We Develop Openly with the Community

BLAST 4

BEAM PLASMA & ACCELERATORSIMUL

Online Documentation: Open-Source Development & Benchmarks:
warpx|hipace|impactx.readthedocs.io github.com/ECP-WarpX

° All checks have passed

For a complete list of all example input files, have a look at our

Run WarpX 24 successful and 1 neutral checks
Examples/ directory. It contains folders and subfolders with self-
Input Parameters = ; ¢
‘ / . describing names that you can try. All these input files are automatically v ¥ macOS / AppleClang (pull_request) Successful in 40m (Required)  Details
Python (PICMI) tested, so they should always be up-to-date. = g
E Exampies v - Windows / MSVC C++17 w/o MPI (pull_request) Successul in 58m Details
Beam-driven electron acceleration Beam-driven electron acceleration
.0. il ired ) Detail
Uaerdiven electron accatartion 7 () CUDA / NVCC 11.0.2 SP (pull_request) Successful in 31m ((Required ) ails
AMReX inputs :
Plasma mirror v () HIP / HIP 3D SP (pull_request) Successful in 29m Details
Laser-ion acceleration e & 2D case
Uniform plasma +. & 20 case T boosted Frame v () Intel / oneAPI DPC++ SP (pull_request) Successful in 38m Details
e . o X 3D case in boosted frame = 3
Capacitive discharge . [@) () OpenMP / Clana pvwarpx (bull reauest) Successfulin 37m (" Reauired Details

230 physics benchmarks run on every code change of WarpX
. . . 34 physics benchmarks for ImpactX
Rapid and easy installation on any platform:

conda install spack install warpx cmake -S . -B build
-c conda-forge warpx spack install cmake --build build --target
py-warpx install

A
‘-.Pi] brew tap ecp-warpx/warpx

: module load warpx
brew install warpx

module load py-warpx

python3 -m pip install.




Modular Software Architecture

BLAST /

Python: Modules, PICMI interface, Workflows [y ety v

o) ++
WarpX ImpactX HIPACE+ | ARTEMIS
| full PIC, lerator lattice desi quasi-static, _ lectron
L PA/LP accelerator lattice design PWEA microelectronics
PICSAR
ML

. — M Frameworks AMReX
Ny PyTorch, openPMD

Tensorflow, ... Containers, Communication, diagnostics
Portability, Utilities

0

OS

Desktop
to




GPU-accelerated Synthesis:

PIC Simulations & ML Models

Demonstrated profits from GPUs Approach

® first-principle models: e Creation of a compatible ecosystem
Particle-in-Cell simulations e C++ core, Python control/glue

® data-driven models: e pure C++ Python bindings: pybind11
neural network training & inference

Implementation Goals BLAST &
e augment & accelerate on-GPU PIC | |

simulations with on-GPU ML models ? Numba _ie:'dswrtie; ¢ PyTorch
e support many HPC C++ compilers tensors\/ arrays

e rapid ML model design "plug-and-play” "
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Augmenting & GPU-accelerating PIC

Simulations & ML Models

Embracing Emerging APl Standards Compute example
® here: cuda_array_interface e data shared as views, stays on device
® enables in-memory updates

'‘shape': (1,),
‘typestr': '<f8°',
‘desertc [, <8V,
‘stream': 1,

from impactx import ImpactXParIter
import torch

for pti in ImpactXParIter(...):
soa = pti.soa().to_xp()
X = soa.real["x"]

'version': 3,
'strides': None,
‘data': (

data_arr = torch.tensor(

stack([x, y, t, px, py, ptl, axis=1),
device=device,

dtype=torch.float64,

e more general: DLPack )

Cross-Ecosystem, In Situ Coupling
Consortium for Python Data API
Standards data-apis.org

with torch.no_grad():
surrogate_model(data_arr)

32



A key challenge to particle accelerator design:

suppress emittance growth

plasma column

o Within plasma stage

o emittance preserved if beam width is matched
to transverse focusing forces in plasma stage

matched beam width

e Transport between stages
o focus beam to matching conditions of subsequent stage

o transport complex beams, e.g., with energy spread (chromaticity) without degrading beam
quality (emittance, particle loss, energy spread) ...

e Demonstrator problem: control emittance growth through 15 stages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

\Eug 3mm
IASE] Elo ©
=l \ puig@ -> “lo o |2 laser —>
electron \ 2 pulsed
bunch
stage 1 plasma column  transport stage 2 plasma column
107um + 28cm + 43um 3cm 107pm + 28cm + 43um 33




ML-Guided Optimization: Automate Scans &

Design Workflows

Design Optimization: 300 [
e ML finds optima rapidly, e.g. 250 1
Gaussian Processes, Bayesian 2 200
Opftimization g 150
e Multi-Fidelity (think: multi-resolution): ° 100/
Learn trends from fast simulations and sof | N
. . . == Single fidelity
add precision with large costly sims ol — Muli-task
6 110 2l0 310 410 SIO 610 710 810
Run time [h]
Strongly-correlated case: Un-correlated case:
A ) L(?w—fifjeliFy data Low 2 —
E . a8 High-fidelity data | yncertainty, g ol 3 ;?:ﬁrde;ftyyddaat;
g s despite the 5§ . High uncertainty;
| 52 e g ° o ¢
g 0 /' . / absence of % 0_/‘. \ . / low-fidelity data
- ® .// high-fidelity g = < is ignored
o data g 17 e .
—20.0 0j2 0:4 Ojﬁ 0.'8 1.0 25
Input x; 00 02 04 06 08 10

Input x;

Bonilla et al., NIPS, (2007): R. Lehe et al., APS DPP (2022): A. Ferran Pousa et al., IPAC22 (2022) & PRAB (2023)
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libEnsemble: Design Optimization with Reduced Models

completed stages

0 2 4 6 8 10 12 14 16 18 20 Staged LPA
300000

150 — T T T r - :
2000001 - Beam < 100} -
(]
> ] ]
50}t i
1000001 Emittance -
N OL< i 3 i . L N 3
0- Preservation —
— 0.4 1
3
u _
;\3 0.4 & 0.2
; ] 0.0t ; i i i . .
&% 3. converge T e
0.0 3D g | = Analytical matching
" ¥ J . ¥ y = ww QOptimized matching
4. optimize S| |
100 . Op
— R1 1.0} 4
O / 5[
£ — R3 B
é =r L E 50 | )
o S 1. optimize < 2| L
A V4
0 T T T T T T IOW-D, redu. (O] 2 s L L s L L -
0 100 200 300 400 500 0 1 2 3 4 5 6
Wa rpX output iteration z [m]

Wake-T, libEnsemble

2. inform
3D ¢ D
J.-L. Vay et al., ECP WarpX MS FY23.1; A. Ferran Pousa et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-TUPA093 (2023) 35




Functional examples of cleaning and training can

be found on-line

Run WarpX @ / Workflows / Training a Surrogate Model from WarpX Data ©) Edit on GitHub

Examples

Parameters: Python (PICMI)

TOR - Training a Surrogate Model from WarpX Data

Eiorcions Suppose we have a WarpX simulation that we wish to replace with a neural network surrogate
Extend a Simulation with Python model. For example, a simulation determined by the following input script
Domain Decomposition

pllstileing b ibuton mappkig @® Python Input for Training Simulation v
Debugging the code

Run LibEnsemble on WarpX In this section we walk through a workflow for data processing and model training. This workflow

Plot timestep duration was developed and first presented in Sandberg et al. [1], Sandberg et al. [2].
Predicting the Number of Guard
Cells for PSATD Simulations This assumes you have an up-to-date environment with PyTorch and openPMD.
Archiving
B Training a Surrogate Model from Data Cleanmg
WarpX Data
Data Cleaning It is important to inspect the data for artifacts to check that input/output data make sense. If we
B Create Novnalbad Datasat plot the final phase space for beams 1-8, the particle data is distributed in a single blob, as shown

by Fig. 18 for beam 1. This is as we expect and what is optimal for training neural networks.
Neural Network Structure

[%) Train and Save Neural Network

https://warpx.readthedocs.io/en/lat g z g =
= e = 0
est/usage/workflows/ml_dataset_tr = % 5 ~_s|
aInIthtml Output formats 4'0 . 5'0
yt-project z-0.28 m [um] z-0.28 m [um]

openPMD-viewer

& Read the Docs

https://warpx.readthedocs.io/en/latest/usage/workflows/python_extend.html|
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https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html

Functional examples of surrogates in ImpactX

can also be found on-line

< C O 6 htlps://impactx.readlhedocs.io/enl|a(es(/usage/examples/py!orch_surroga\e_model/README.h!m1

#) Getting Started OLCF User Docume... ] WarpX docs # NERSC Elements ~ LBL em. NERSC JupyterHub ImpactX GitHub GitHub |7 OLCF jupyter staged_Ipa_i... (4) -...

Cold Beam in a FODO Channel with @ / Examples / 9 Stage Laser-Plasma Accelerator Surrogate © Edit on GitHub
RF Cavities (and Space Charge)

Thermal Beam in a Constant

£y el shace 9 Stage Laser-Plasma Accelerator Surrogate

Bithermal Beam in a Constant
Focusing Channel (with Space
Charge) . :
This example models an electron beam accelerated through nine stages of laser-

8 9 Stage Laser-Plasma Accelerator plasma accelerators with ideal plasma lenses providing the focusing between stages.

Surrogate .
For more details, see:

Run

Analyze e Sandberg R T, Lehe R, Mitchell C E, Garten M, Qiang J, Vay J-L and Huebl A.

Visualize Synthesizing Particle-in-Cell Simulations Through Learning and GPU Computing
Apochromatic Drift-Quadrupole for Hybrid Particle Accelerator Beamlines. Proc. of Platform for Advanced
Beamline Scientific Computing (PASC'24), submitted, 2024.
Apochromatic Drift-Plasma Lens e Sandberg R T, Lehe R, Mitchell C E, Garten M, Qiang J, Vay J-L and Huebl A.
Beamline Hybrid Beamline Element ML-Training for Surrogates in the ImpactX Beam-
Tune Calculation in a Petlodic Dynamics Code. 14th International Particle Accelerator Conference (IPAC'23),
FODO Channel WEPA101, 2023. DOI:10.18429/JACoW-IPAC2023-WEPA101

https://impactx.readthedocs.io/en/ g 2t et

Parameters: Python
latest/usage/examples/pytorch s
urrogate model/README htm| i

A schematic with more information can be seen in the figure below:
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https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html

Data preparation and cleaning

Beam at Stage 1 end

100{..  -. 100{ - 100 -
e Remove clear outliers E of e |E ot . e § -
- : > i i | B >
o 70/30% train/test split 7 A =05 P -1
. . -100 0 100 0 50 50
e Normalize by training bunch mea il 0B [um) ST ]
50 50 { 50
> 0 5 04 > 0
—501 —50-2 . -50 .
0 50 0 50
z-0.28 m [um] z-0.28 m [um]
’ . le4 ’
50— 3 i : 3 50_ > " L% 2-
el o8 > of R > 1
50 —sof ¥ S
-100 0 100 -100 0 100 : 50
X [um] y [um] z-0.28 m [um]
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Model learns training data very well

Stage 1
Black dots: training beam
Colored dots: predicted beam

MSE

Training data: 1M particles / beam
Training time: 2-2.2 hrs on 1 GPU

T T ¥ T ] T 1'0 el T T
-5 0 5 -5 0 5 1.1 ~1.0
X (um) y (um) & (um) le2

39



10 million particles

ImpactX::evolve [10.154 s]

Impact j ImpactX::evolve::slice_step [495.031 ms]
impa... 71 impactx::Push [494.928 ms]
impa. impactx::Push::Programmable [494.927 ms]
surrogate push [494.900 ms]
r} ref p... } itransform tot[1.0.. get beam data [3.372 ms] beam data normalize [3.710 ms] §beam data inference [477.069 ms]
impactx::transfor...
cuda... D :: Wl :::,: cudaStreamSync...] : ' : cudaDeviceSynchronize ]’, ‘::[ cudaDeviceSynchronize I :.‘.:L.\ i e, O 111?@.

ImpactX:evolve [10.154 g]
ImpactX::evolve::slice_step [495.031 ms]

impactx::Push [494.928 ms]
impactx::Push::Programmable [494.927 ms]

beam data inference [477.069 ms] ‘

surrogate push [494.900 ms]

beam data unnormalize [5.099 ms]

cudaDeviceSynchronize : ‘ [

store beam data [2.632 ms]

sto...‘lto s transform [...

impactx::transf...

cudaDeviceSynchronize

J :: : :: :: : | cudaDeviceSynchronize II I : cudaStreamSy... j
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1000 particles

V88T apden +

ImpactX::evolve [2.278 s]
! l... \ l... 1 ImpactX::evolve:slice_step [2.850 ms]
' ‘ impactx::Push [2.796 ms]
7 impactx::Push::Programmable [2.795 ms]

surrogate push [2.771 ms]

ref part... ref particle inference [3... “ ref ... t... !get beam data [28... beam data n... beam data inference [403.... beam data unno...

store beam data [580.070 ps]

store ref particle [... t...



Workflows: Surrogates - NN Hyperparam Tuning [Ryan, Juliette]

Wz WWels slecornollisnaed

 Incorporated dropout layers

« Manage NN training with Ray Tune

« Used torch.compile (but it didn’t speed things up)

« Continue the learning rate scan

« Learn that Ray Tune is the tool we want

e Speedup > 2x & smaller, less-noisy final
loss-function with tf32 & PRel.u




x' (mrad)

S
@ = IS
X electron
bunch
- stage 1 plasma column
Emittance: area
of phase space
ellipse [
20t +

20

plasma lens

transport

stage 2 plasma column

Emittance increases if beam is
not matched and “smeared out”

| | |
- = = matched case (CM)
— Mismatched case (C1)
mismatched case (C2)

<« fin.C1

‘——gn fin,C2
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Example usage: Find lens strengths that minimize x emittance

Stage-by-stage optimization of transport parameters
Emittance in x is kept constant, emittance growth in y reduced

@ - (b)
1.04- @ ©® ¢ OO0
—_ ® o ® ~ 1.06
E ®» © °l E
x 1.03- O WarpX reference =
O ® ImpactX+surrogate S 1.04-
(ax o
S1.021 e ImpactX+surr. optimized | £
£ ’ O%?Ob% £ 1.02
1.01- O ® ® =
e © o o o © Py @
S R 1.00
0 1 2 3 4
s (m)

scipy.optimize.minimize with Nelder-Mead (simplex) optimization

[

Py

_[ﬂ

WarpX reference
ImpactX+surrogate
ImpactX+surr. optimized ] ]
N =
1 @

= "

0
LT _

0

1 2 3 4
s (m)
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emittance in x (mm-mrad)

1.06 -

1.04

1027

Close the loop: use ImpactX+WarpX-optimized
transport to improve transport in WarpX

WarpX simulation of staged LPA

(O analytic transport
e surrogate-optimized transport
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k=
o
o

=
o
o

emittance in y (mm-mrad)

=
o
e

£=
o
N

Close the loop: use ImpactX+WarpX-optimized
transport to improve transport in WarpX

WarpX simulation of staged LPA

[ ] analytic transport 0 O
= surrogate-optimized transport L] 0 U O
o []
L]
L[]

D D D D o 5] a u
IEI EI - - B = 4] o 2] m] @ &
0 1 2 3 4
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Toward an integrated ecosystem of codes with on-the-fly tunability

Fidelity

Reduced Full
physics physics

& &
Reduced First

as models principles as

Accurate

accurate fast

1D-1V 3D-3V
as as

possible Low High possible
resolution resolution

e.g., optimization & operations e.qg., exploration, training data
Ecosystem of codes
] share models & data between codes
"1 works best when standardized

Office of
Science

\\US EEEEEEEEEE

“ senKeLEY LAB e e A TA P)) (2 ENERGY




PRelLU activation function

PReLU(x)
3]
2]
11
. slope a=0.1

-2 0 2
X
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e Beam is better matched

©)

. . . . . £
o Recall: objective is emittance i § o3

Optimizer “learns” to find better m 2|
In order to improve emittance

©)

Optimal lens strengths improve beam match

Optimized beam width,
divergence fit theory

a
(0 Z ® O WarpX reference
z 1 ® ImpactX+surrogate
2061} e ImpactX+surr. optimized
x VR - V—1/4
£ 051 1\
o \
2041 W
\Q‘@ ® ®
& ge .. OO
&®" T
0 1 2 3 4
s (m)
(c)
® O WarpX reference
T’cg '.| ® ImpactX+surrogate
E \ e ImpactX+surr. optimized
— \ -3/4
x | @& " ~Y
8 1 Q\‘
§, 10 @©@
g ©%.6.®
S =222 e
@é i -®"“0~~0
@
0 1 2 3 4
s (m)

divergence y (mrad)
S

=
| L [] WarpX reference
: ImpactX+surrogate
i = ImpactX+surr. optimized
|“ _____ —_ Y—1/4
s -
h b4
L - B
El l‘-@ﬂﬁrl--__.
0 1 2 3 4
s (m)
() [1 WarpX reference
'.‘ ® ImpactX+surrogate
\ = |mpactX+surr. optimized
E] _____ 2 Y-—3/4
5,
Bg
By
ok @
E- 2 @1~i
0 1 2 3 4
s (m)
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T 1.05{ O x, analytic transport 0 U000 g
’é {| & % surrogate optimized transport O O O
é1‘04 y, analytic transport 3 g DEORO
£ 103/ = vy, surrogate optimized transport
o <
5 1.02 @
©
= @)
51.01-@.§@...-.-|::::
Ol
O]
————— ~ energy /4
~ 061 \
e \
3 \
5 04 \‘@
© .4 i
E ~L.
S a@
gt il I = o
0.2 5 D ™ --l—----_-b
10°
s (SR R R (R R I Y I B ) I | - ~ energy 3/
© \
o \
E
g =,
C ~,
@ 1074 ~
2 ®--
2 TR Q
S T QD 0
a ‘O _____ | B
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A high-fidelity WarpX simulation provides training data

e 3Single simulation / single stage
o Low space Charge — beams do not interfere 1st stage, initial z-x 15th stage, final z-x

« 1 electron beam / stage training | - adeaei
o identical except in energy = P

o beam imean energy = expected mean energy I 07-/
reference beam at stage i *

e Training beam ~ 3-5x larger than reference  -10

~110 ~100 40 50

o Larger region of phase space reference 2 (um) z-stage end (um)
= More general 1st stage, initial pz-px 15th stage, final pz-px
m Harder to learn T e
o Smaller region of phase space 251 g .
m Could miss region of interest X 0.0 X 0
m Less general
. . —2.51
m More efficient training - Y
1.5 2.0 2.5 1.5 2.0 2.5
Training simulation: 404 GPU-hour Pz le3 pe 1€

WarpX simulation on Perlmutter
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Power-Limits Seeded a Cambrian Explosion of Compute Architectures

50 Years of Microprocessor Trend Data

Single-Thread
Performance
| (SpecINT x 103)

Typical Power
o (Watts)

Number of
o Logical Cores

1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collécted for 2010-2021 by K. Rupp

Frontier (USA): 1.2 EFlops
« AMD GPUs

Fugaku (Japan): 0.44 EFlops
- Fujitsu ARM CPUs

Lumi (Finland): 0.3 EFlops
« AMD GPUs

“o?ho’ Leonardo (ltaly): 0.24 EFlops
* Nvidia GPUs

Summit (USA): 0.15 EFlops
* Nvidia GPUs

Upcomlng (under acceptance testing)

Aurora (USA): ~2 EFlops
 Intel GPUs



WarpX is now 500x More Performant than its Pre-Exascale Baseline

April-duly 2022: WarpX on world’s largest HPCs .

L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner in SC’22, 2022

QKR
weak scaling LRI |
:“—_—b
| e |
o\o 100-..,-I--'---lﬁil;#ul‘éinj.--_;--‘: --------- 7’299’072
— \\‘. ~B ‘!1"53-“" / CPU Cores
a 7 5 - Rl ToX S "\?‘“
i - —e.
c ”‘5'% Fiaure-of-Merit: weiahted updates / sec
i G_) Y Date Code Machine N./Node Nodes FOM
. 3/19 Warp Cori 0.4¢7 6625 2.2¢10
-E 5 0 117 - FrO ntier 3/19 WarpX Cori 0.4e7 6625 1.0ell
l-lq—) 6/19 WarpX Summit 2.8e7 1000 7.8ell
ool 9/19 WarpX Summit 2.3¢7 2560 6.8ell
- I Fu ga ku 68,608 GPUs of 1/20 wiiﬁx Summit 2,307 2560 1.0012
. / 2/20 WarpX Summit 2.5e7 4263 1.2el12
C 254 ~7° Summit First Exascale 6/20 WarpX Summit 2.0e7 4263 1.4el2
'(—; Machine 7/20 WarpX Summit 2.0e8 4263 25el2  H¢ »
; 3/21  WarpX Summit 2.0e8 4263  2.9e12
@) —--¥- Pe r I mutter 6/21 Wzgx Sﬁﬁit 2.028 4263 2.7212 oo
n 7/21 WarpX Perlmutter 2.7¢8 960 1.1e12 T WO
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