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Abstract (12' + 3' Q&A)
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Kinetic simulations of relativistic, charged particle beams and advanced plasma accelerator elements are often 
performed with high-fidelity particle-in-cell simulations, some of which fill the largest GPU supercomputers. 
Self-consistent modeling of wakefield accelerators for colliders includes many elements beyond plasma 
acceleration. The integrated Beam, Plasma & Accelerator Simulation Toolkit (BLAST) provides high-performance 
simulation codes suitable to model different parts of a beamline on the latest and world’s largest GPU 
supercomputers. Yet, for some workflows such as start-to-end modeling and coupling with experimental 
operations (digital twins), it is desirable to integrate and model all accelerator elements with very fast, effective 
models. Traditionally, analytical and reduced-physics models fill this role, usually at a cost of lower fidelity and/or 
reduced dynamics.

Here, we show that the vast data from high-fidelity simulations and the power of GPU-accelerated 
computation open a new opportunity to complement traditional modeling: data-driven surrogate modeling 
through machine learning (ML). We present the new capabilities for fully GPU-accelerated, in-the-loop ML 
workflows in BLAST and how they complement and fill a need alongside first-principles modeling and reduced 
models and pair well with recently established out-of-the-loop machine-learning workflows (i.e., optimization). We 
demonstrate that the high-quality data from WarpX simulations can train low-error surrogate data models, which 
are seamlessly integrated into a GPU beamline simulation using ImpactX, with the purpose of minimizing 
chromatic emittance growth during acceleration and transport in a staged laser-wakefield accelerator of 
low beam charge.



Outline

GPU-Accelerated Particle-in-Cell Modeling at Exascale
Approaches to wakefield collider modeling

theoretical, first-principle & reduced physics simulation, data

BLAST Codes for Accelerator Modeling
Exascale & ML Technology in WarpX and ImpactX

Staging of LWFA for future HEP colliders
Hybrid beamlines: plasma & transport modeling, ML integration & evaluation



Level of Realism: 50 multi-GeV Stages Modeled in 3D
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LWFA lattice:
• Plasma channels: 28cm
• Gaps: 3cm
• Plasma lens model: linear

thick lens (3 mm) w/
“residence correction”

1 10 20 30 40 50
stage number

EAAC 2023

J-L Vay et al., WarpX MS FY23.1 and FY23.2 (2023);  work in collaboration with
A Ferran Pousa (DESY);  A Ferran Pousa et al., IPAC23 (2023) DOI:10.18429/JACoW-IPAC2023-TUPA093

Relative energy spread:
flat at 0.005% after few stages

25 50

first 3D simulation of a chain of 50 plasma accelerator stages

Electron beam:
• Charge: -1 fC
• Size: 0.75 μm x 0.75 

μm x 0.1 μm
• Emittance: 1 mm.mrad

WarpX

Grid size/resolution:
• 128 x 128 x 17664,  

boosted frame
• 2 μm x 2 μm x 0.01 μm

Computer: 256 GPUs for 8h

On the fly focusing lens tuning using e- beam 
Twiss parameters enables emittance preservation.

Analytical expression to set plasma lens strength:

  
  lens strength, moment

4

no charge loss
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Approaches to Wakefield Collider Modeling

Is data-driven modeling via machine-learning surrogates accurate and fast enough for
● collider design: optimization  and/or
● collider operations: digital twins ?

For theoretical modeling of complex, nonlinear many-body systems such as a collider we develop and 
evaluate  models  that have the following characteristics - and appear to do at best two of those well:

level of detail

speed

accuracy
first principle

simulation

data-drivenan
aly

tic
al



BLAST Codes for Accelerator Modeling
Exascale & ML Technology in WarpX and ImpactX



7

Ryan
Sandberg

Andrew
Myers

Weiqun
Zhang

Jean-Luc 
Vay

Olga 
Shapoval

Ann
Almgren

Revathi
Jambunathan

Axel
Huebl

Kevin
Gott

Lixin
Ge

Edoardo
Zoni

Junmin
Gu

Marco 
Garten

David
Grote

Justin
Angus

AM

Lorenzo
GiacomelSwitzerland

Henri
Vincenti

Luca
Fedeli

Thomas 
ClarkFrance

Pierre
Bartoli

Arianna 
Forment

i

Kale 
Weichmann

Chad
Mitchell

Ji
Qiang

WarpX open governance

Rémi 
Lehe

Germany
Maxence 
Thévenet

Severin
Diederichs

Alexander
Sinn

Ángel
Ferran Pousa

Rob
Shalloo

Igor
AndriyashFrance

over 80
contributors,
incl. from the
private sector

Roelof 
Groenewald

Franz
Poeschel

Eric 
Clark

Developed by an international, 
multidisciplinary team



8

Open Source Community Codes by Features

Integrated through
Standards & Workflows

Data

Input

Lasers

Optimize

Model Speed: for accelerator elements

        WarpX                   WarpX / ImpactX                   WarpX           ImpactX

Lens LWFA 
Stage 2 Drift …LWFA

Stage 1 Drift Drift
few pC

e- beam

Simulation time: full geometry, full physics
   hrs                   <sec

       256 GPUs          1 GPU

D
es

kt
op

 to
 H

PC



Augmenting & GPU-accelerating PIC Simulations & ML Models

fields &      particles

tensors        arrays

Compatible ecosystem between:

Persistent GPU data placement
● read+write access, no CPU transfer

Cross-Ecosystem, In Situ Coupling:
Consortium for Python Data API 
Standards data-apis.org

GPU Workflows are blazingly fast
● first-principle models: PIC simulations
● data-driven models: machine learning

We augmented & accelerated on-GPU
PIC simulations with on-GPU ML models!



Staging of LWFA for
future HEP colliders

Hybrid beamlines: plasma & transport modeling, 
ML integration & evaluation



LPA surrogate models bridge runtime gap

level of
detail

speed

accuracy simulation

data-drivenan
aly

tic
al
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Our goal is to find better transport: Combine Plasma & RF Accelerator Elements for start-to-end modeling

tightly-coupled LPA-neural networks inside ImpactX

Neural 
network

Neural 
network

● high-quality plasma simulation can 
be expensive
○ 15 stages: 1,316 A100 GPUhrs

○ 3D electromagnetic, fully kinetic, 
128x128x35328 cells

● optimization challenge
○ usually 1000s of runs (derivative-free)
○ repeated evaluation in 3D would be 

very expensive

< second hourshours

< second < second< second

● approach: specialized replacements
○ in situ coupling of ImpactX simulation 

with data-driven surrogates
○ train surrogate models from high-quality 

WarpX data
Related works (CPU): Edelen et al. (2020), Djordjevic et al. (2021), Koser et al. (2022), Badiali et al. (2022)
Concurrent work (1 GPU, differentiable), NN model integration: J Kaiser et al., Phys. Rev. Accel. Beams 27, 054601, May 28th (2024)



Initial → final
phase space
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Surrogate models learn initial ⇨ final phase space map from
LPA stage data generated by a high-fidelity WarpX simulation

ex
am

pl
e:

 s
ta

ge
 1

 tr
ai

ni
ng

 d
at

a

Surrogate model: Generic Transport Map

RT Sandberg et al., WEPA101, IPAC23 (2023)

Multiple hidden layers

Number of 
hidden nodes

Example of neural network with three 
hidden layers

• PReLU
• MSE loss
• Adam optimizer

Stages 1-3: 5 hidden layers, 900 nodes per layer
Stages 4-15: 3 hidden layers, 700 nodes per layer



Initial → final
phase space
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Training Data 
generation with WarpX
● 1 plasma column
● 15 diluted beams
● 404 A100 GPUhrs 

(once!)

Surrogate models learn initial ⇨ final phase space map from
LPA stage data generated by a high-fidelity WarpX simulation

ex
am
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ng
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Surrogate model: Generic Transport Map
supports beams with
✔arbitrary profiles
✔chromatic effects
✗ collective 

effects

Notes:
● intentional choice
● very easy to modify 

models from Python
● ideal ground for ML 

model development

RT Sandberg et al., WEPA101, IPAC23 (2023)



Evaluation: Synthesis of ImpactX and 
WarpX-trained surrogate models

14
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Relative errors in beam moments

stage 1 stage 2 stage 15

σx 0.12% 1.8% 3.2%

σpx 0.54% 2.1% 2.8%

εx 0.43% 0.38% 0.39%

σy 0.03% 1.5% 1.2%

σpy 0.3% 1.9% 3.2%

εy 0.3% 0.44% 2.1%

Black: WarpX reference
Red: ImpactX+surrogate

ImpactX+WarpX surrogate agrees with WarpX reference 
after 15 stages



strong scaling of ImpactX+15 NN surrogates

Modeling + ML Inference are fully GPU accelerated,
approaches linear strong scaling in number of particles

16

ImpactX with WarpX-trained 
surrogates: 10 GPU sec

for 15 stages
 

GPU inference time: 63ns / particle / stage
ImpactX tracking >1M particles

103 particles Time (ms) % of push

Stage 15 Push 2.77 100

Inference 0.77 27.8

Data Preparation 2.00 72.2

107 particles Time (ms) % of push

Stage 15 Push 495 100

Inference 477 96.4

Data Preparation 18 3.6

ImpactX+WarpX surrogates, 1 GPU:
2-4 simulations / second!

WarpX simulation, 256 GPUs:
1 simulation / 5.1 hours

15 stages:

ImpactX with WarpX-trained 
surrogates:

2-4 simulations / second!

time in surrogates

Note: NN inference needs 
significant memory. Surrogates of 
15 stages did fit into 80GB A100 
GPU memory.



Rapid Optimization with Surrogates: Results Transfer to 3D WarpX
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Central BLAST Code Interoperability: Combine Plasma & RF Accelerator Elements for start-to-end modeling
high-quality, first-principle WarpX data used for ImpactX ML surrogate training

LPA + Transport Optimization
with ≈1000 evaluations

tightly-coupled LPA-neural networks inside ImpactX

Neural 
network

Neural 
network



Optimization with in-the-loop 
ML surrogate model

≈752x estimated cost savings with
in-the-loop ML optimization workflow

18

1500 GPU hours simulation
x 1000 iterations

+ 1500 GPU hours validation simulation

= 1 501 500 GPU hours

Previously (Estimate)

450 GPU hours training simulation
+ 3 GPU hours PyTorch training

x 15 stages
+ 10 GPU seconds ImpactX+NN

x 1000 iterations
+ 1500 GPU hours validation simulation

= 1 998 GPU hours



● R6→R6 surrogate: intentional choice, for the detailed study of chromatic effects
○ high level of detail, arbitrary low-charge phase spaces, conserves the phase of each particle
○ drop-in replacement for single-particle, first-principle models

19

In-the-loop Machine Learning Surrogates
Beyond Single-Particle Tracking Maps

These and your own ML ideas can now easily be implemented (Python) & studied in BLAST 
codes WarpX/ImpactX - see our documentation and detailed examples on how to get started 🚀

Examples to include collective effects in ML surrogates:
● 🔨 double down: trajectory + collective beam parameters R6+m→R6+m

○ how: expose additionally m collective beam parameters to ML model for various beam charges
○ note: very costly learning phase, unless constrained (e.g., only change 1D current profile)

● 📽 project: learn & predict phase spaces
○ how: learn & predict selected 2D phase spaces for various beam charges
○ note: less detailed; resampling loses phase, e.g., for tune calculations in rings
○ e.g., Emma et al, PRAB 21, 112802 (2018);  Edelen et al., TUPS72, IPAC24 (2024)

● 🌱 simplify: work with beam moments and simpler distributions
○ how: learn & predict only collective beam parameters, learn simpler distributions (e.g., KV)
○ note: little detail; resampling loses phase, e.g., for tune calculations in rings
○ e.g., Edelen et al., PRAB 23, 044601 (2020);  Garcia-Cardona & Scheinker, PRAB 27, 024601 (2024)
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In-the-loop Machine Learning Surrogates
Beyond Single-Particle Tracking Maps

These and your own ML ideas can now easily be implemented (Python) & studied in BLAST 
codes WarpX/ImpactX - see our documentation and detailed examples on how to get started 🚀

��

https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html


Summary

Established data-driven methods in BLAST codes WarpX & ImpactX
● kinetic codes & in situ ML elements: easy to test & study new data models
● fully accelerated (GPU or CPU), fully documented
● vibrant, friendly & helpful open source community - we invite you to join bring your own 

lattice & ML model
Follow-up work on achromatic transport already underway in collaboration with C Lindstrøm et al., Oslo (2024).

A fast, high-fidelity, data-driven LPA staging workflow with ImpactX+surrogate models
● neural network surrogates reproduce unloaded LPA simulations with % level error
● runs in seconds – optimization workflow gets 𝓞(1000) speedup
● best ImpactX+surrogate transport parameters readily transfer to 3D WarpX simulations

○ emittance significantly improved    for 15 stages to     prior best results

21

Neural 
network

Neural 
network

WG6 Talk: Pierre Drobniak 



Thank you for your attention!
Try it yourself:

We acknowledge the ImpactX, WarpX, AMReX and pyAMReX open source communities for their invaluable contributions.  In addition, we acknowledge and 
thank Alexander Sinn and Thierry Antoun for their contributions to particle data structures.  We thank Carl Schroeder, Eric Esarey, Carlo Benedetti and Davide 
Terzani for discussions.  This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National 
Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.  This material is based upon work supported by the U.S. Department of 
Energy, Office of Science, Office of High Energy Physics, General Accelerator R&D (GARD), under contract number DE-AC02-05CH11231.  This material is 
based upon work supported by the CAMPA collaboration, a project of the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing 
Research and Office of High Energy Physics, Scientific Discovery through Advanced Computing (SciDAC) program.  This research was supported by the 
Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, 
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing 
imperative.  This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by 
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award HEP-ERCAP0023719.

ECP-WarpX/WarpX
ECP-WarpX/impactX
AMReX-Codes/pyamrex

Documented example links:
🔗 WarpX ML training from openPMD
🔗 ML Surrogates in ImpactX

Paper: R. Sandberg et al.,
PASC24 Best Paper (2024)
🔗 DOI:10.1145/3659914.3659937

https://www.github.com/ECP-WarpX/WarpX
https://www.github.com/ECP-WarpX/impactX
https://github.com/AMReX-Codes/pyamrex
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://doi.org/10.1145/3659914.3659937
https://doi.org/10.1145/3659914.3659937
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
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Multiple hidden layers

Number of 
hidden nodes

Example of neural network with three 
hidden layers

Model of a single stage

Hyperparameter tuning indicated that relatively simple neural 
networks were sufficiently accurate

Stages 1-3: 5 hidden layers, 900 nodes per layer
Stages 4-15: 3 hidden layers, 700 nodes per layer

implemented in PyTorch
• PReLU
• MSE loss
• Adam optimizer

stage 3 models

st
ag

e 
1
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pe
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ni
ng



Synthesized Simulation with Optimized Lenses
Enabled Development of an Improved Analytical Theory
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● before: analytically-motivated in situ tuning of lens strength
● now: automated tuning of multiple lens parameters
● enables: development & validation of new theoretical models

RT Sandberg et al., PASC24
RT Sandberg et al., in preparation



Goal: improve beam quality (emittance) after many (15) LPA stages
○ focus beam to matching conditions of subsequent stage
○ transport complex beams, e.g., with energy spread (chromaticity) without degrading beam 

quality (emittance, particle loss, energy spread) …
Task: find best interstage transport parameters including chromatic effects

○ transport: plasma lens for beam focusing
○ two parameters per lens: lens strength and position

26

Challenge Problem: Rapid Design Optimization
of Inter-Stage Transport

Follow-up work on achromatic transport already underway in collaboration with C Lindstrøm et al., Oslo (2024)



WarpX is a Community Exascale Particle-in-Cell Code

Applications
laser-plasma physics,
particle accelerators, extreme
light sources, fusion devices & plasmas, …

Award–Winning Code & Science

Exascale Particle-in-Cell Code
● electromagnetic or electro/magnetostatic
● PIC-fluid hybrid

Push 
particles

Deposit 
currents

Solve fields

Gather fields

 

 

 

 

● time integration:
explicit, implicit

D
es

kt
op

 to
 H

PC

Portable, Multi-Level Parallelization
• MPI: 3D MR decomposition

○ dynamic load balancing
• GPU: CUDA, HIP and SYCL
• CPU: OpenMP

Scalable & Standardized
• Python APIs, openPMD data
• In situ processing
• Open community ecosystem

International Contributors incl. private sector
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J-L Vay et al., NIMA 909.12 (2018)
L Fedeli, A Huebl et al., SC22, DOI:10.1109/SC41404.2022.00008 (2022)

https://doi.org/10.1109/SC41404.2022.00008


Benchmarks & Validations
● 86 continuously run benchmarks
● code-to-code comparisons

focusing quad
700 MHz RF
defocusing quad

250 MeV proton bunch

rm
s 

b
ea

m
 s

iz
e 

(m
m

)

(Lines)   ImpactX
(Points) IMPACT-Z
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ImpactX: We leverage WarpX Technology for RF Accelerator Modeling

C Mitchell et al., HB2023, THBP44 and TUA2I2 (2023);  A Huebl et al., NAPAC22 and
AAC22 (2022);  J Qiang et al., PRSTAB (2006);  RD Ryne et al., ICAP2006 ICAP2006 (2006)

Beam-Dynamics in Linacs, Rings, Colliders
● intense beams, long-term dynamics
● HEP science: FNAL complex evolution,

FCC-ee, FCC-hh, muon collider
● s-based, electrostatic

○ relative to a reference particle
○ elements: symplectic maps

Advanced Numerics
symplectic, based on IMPACT-Z, space charge,
soon: radiative effects (CSR & ISR)

Triple Acceleration Approach
• GPU support
• Adaptive Mesh Refinement
• AI/ML & Data Driven Models

Performance
• order-of-magnitude perf.↗ from GPUs

LDRD



We Develop Openly with the Community

python3 -m pip install .
brew tap ecp-warpx/warpx
brew install warpx

spack install warpx
spack install 
py-warpx

conda install
        -c conda-forge warpx

module load warpx
module load py-warpx

cmake -S . -B build
cmake --build build --target 
install

Open-Source Development & Benchmarks:
github.com/ECP-WarpX

Online Documentation:
warpx|hipace|impactx.readthedocs.io

Rapid and easy installation on any platform:

230 physics benchmarks run on every code change of WarpX
34 physics benchmarks for ImpactX



Modular Software Architecture
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WarpX
full PIC, 
LPA/LPI

AMReX

Containers, Communication,
Portability, Utilities

MPICUDA, OpenMP, SYCL, HIP

openPMD
diagnostics

Python: Modules, PICMI interface, Workflows

PICSAR
QED Modules

Math

FFTs,
lin. alg.

ABLASTR: shared PIC

ARTEMIS
microelectronics

ImpactX
accelerator lattice design

Desktop
to

HPC

HiPACE++
quasi-static, 

PWFA

pyAMReX

ML 
Frameworks

PyTorch, 
Tensorflow, …

…



   GPU-accelerated Synthesis:
PIC Simulations & ML Models

fields &      particles

tensors        arrays

Approach
● Creation of a compatible ecosystem
● C++ core, Python control/glue
● pure C++ Python bindings: pybind11

Demonstrated profits from GPUs
● first-principle models:

Particle-in-Cell simulations
● data-driven models:

neural network training & inference

31

Implementation Goals
● augment & accelerate on-GPU PIC 

simulations with on-GPU ML models
● support many HPC C++ compilers
● rapid ML model design "plug-and-play"

W Jakob et al., pybind11 – Seamless operability between C++11 and Python (2017)
A Huebl et al., pyAMReX: GPU-Enabled, Zero-Copy AMReX Python Bindings including AI/ML (2023)
A Myers et al., AMReX and pyAMReX: Looking Beyond ECP, under review, arXiv:2403.12179 (2024)



Augmenting & GPU-accelerating PIC 
Simulations & ML Models

Embracing Emerging API Standards
● here: __cuda_array_interface__

32

Compute example
● data shared as views, stays on device
● enables in-memory updates

Cross-Ecosystem, In Situ Coupling
Consortium for Python Data API 
Standards data-apis.org

● more general: DLPack

A Huebl et al., pyAMReX: GPU-Enabled, Zero-Copy AMReX Python Bindings including AI/ML (2023)
A Myers et al., AMReX and pyAMReX: Looking Beyond ECP, under review, arXiv:2403.12179 (2024)



● Transport between stages
○ focus beam to matching conditions of subsequent stage
○ transport complex beams, e.g., with energy spread (chromaticity) without degrading beam 

quality (emittance, particle loss, energy spread) …

● Within plasma stage
○ emittance preserved if beam width is matched

to transverse focusing forces in plasma stage

A key challenge to particle accelerator design:
suppress emittance growth

33

● Demonstrator problem: control emittance growth through 15 stages

plasma column

matched beam width
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ML-Guided Optimization: Automate Scans & 
Design Workflows

Design Optimization:
● ML finds optima rapidly, e.g. 

Gaussian Processes, Bayesian 
Optimization

● Multi-Fidelity (think: multi-resolution):
Learn trends from fast simulations and 
add precision with large costly sims

Bonilla et al., NIPS, (2007); R. Lehe et al., APS DPP (2022); Á. Ferran Pousa et al., IPAC22 (2022) & PRAB (2023)

Low 
uncertainty,
despite the 
absence of 
high-fidelity 
data

Un-correlated case:

High uncertainty;
low-fidelity data 
is ignored

Strongly-correlated case:



libEnsemble: Design Optimization with Reduced Models

J.-L. Vay et al., ECP WarpX MS FY23.1;  A. Ferran Pousa et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-TUPA093 (2023)

3. converge
    3D

1. optimize
low-D, redu.

Staged LPA
Beam 

Emittance 
Preservation

2. inform
  3D

35

4. optimize

Wake-T, libEnsemble
WarpX



https://warpx.readthedocs.io/en/lat
est/usage/workflows/ml_dataset_tr
aining.html 
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Functional examples of cleaning and training can 
be found on-line

https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html


https://impactx.readthedocs.io/en/
latest/usage/examples/pytorch_s
urrogate_model/README.html 
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Functional examples of surrogates in ImpactX 
can also be found on-line

https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html


● Remove clear outliers
● 70/30% train/test split
● Normalize by training bunch mean / standard variation

38

Beam at Stage 1 end
Data preparation and cleaning



39

Stage 1
Black dots: training beam
Colored dots: predicted beam

Training data: 1M particles / beam
Training time: 2-2.2 hrs on 1 GPU

Model learns training data very well



10 million particles
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1000 particles

41



What was accomplished
• Incorporated dropout layers
• Manage NN training with Ray Tune
• Used torch.compile (but it didn’t speed things up)
• Continue the learning rate scan 
• Learn that Ray Tune is the tool we want
• Speedup  > 2x & smaller, less-noisy final 

loss-function with tf32 & PReLu

Workflows: Surrogates - NN Hyperparam Tuning [Ryan, Juliette]
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Emittance: area 
of phase space 
ellipse

Emittance increases if beam is 
not matched and “smeared out”



● Stage-by-stage optimization of transport parameters
● Emittance in x is kept constant, emittance growth in y reduced

44

scipy.optimize.minimize with Nelder-Mead (simplex) optimization

Example usage: Find lens strengths that minimize x emittance



Close the loop: use ImpactX+WarpX-optimized 
transport to improve transport in WarpX 

simulation

45



Close the loop: use ImpactX+WarpX-optimized 
transport to improve transport in WarpX 

simulation
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Toward an integrated ecosystem of codes with on-the-fly tunability
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1D-1V 3D-3V

Low 
resolution

High 
resolution

Reduced 
models

First 
principles

Speed Fidelity
Reduced 
physics

Full 
physicsFast 

&

 as

accurate

as

possible

Accurate 

&

 as

fast

as

possible

Ecosystem of codes
🡺 share models & data between codes
🡺 works best when standardized

e.g., optimization & operations e.g., exploration, training data



PReLU activation function
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● Beam is better matched
○ Optimized beam width,

divergence fit theory
● Recall: objective is emittance in x

○ Optimizer “learns” to find better match
In order to improve emittance

49

Optimal lens strengths improve beam match
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● Single simulation / single stage
○ Low space charge – beams do not interfere

● 1 electron beam / stage
○ identical except in energy
○ beam i mean energy = expected mean energy of

 reference beam at stage i
● Training beam ~ 3-5x larger than reference

○ Larger region of phase space
■ More general
■ Harder to learn

○ Smaller region of phase space
■ Could miss region of interest
■ Less general
■ More efficient training

51

training

reference

Training simulation: 404 GPU-hour 
WarpX simulation on Perlmutter

A high-fidelity WarpX simulation provides training data



Power-Limits Seeded a Cambrian Explosion of Compute Architectures
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ARM

CPUs

Top 500
Frontier (USA): 1.2 EFlops 
• AMD GPUs

Fugaku (Japan): 0.44 EFlops 
• Fujitsu ARM CPUs

Lumi (Finland): 0.3 EFlops 
• AMD GPUs

Leonardo (Italy): 0.24 EFlops 
• Nvidia GPUs

Summit (USA): 0.15 EFlops 
• Nvidia GPUs

Upcoming     (under acceptance testing)

Aurora (USA):  ~2 EFlops 
• Intel GPUsAMD

GPUs 2
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WarpX is now 500x More Performant than its Pre-Exascale Baseline

from a full stage simulationApril-July 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner in SC’22, 2022

Figure-of-Merit: weighted updates / sec

11
0x

50
0x

Note: Perlmutter & Frontier in pre-acceptance at the time!

7,299,072
CPU Cores

68,608 GPUs of 
First Exascale

Machine


