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Introduction

Laser Wake-Field Acceleration (WFA) [Tajima, Dawson 79] is the first
and prototypical mechanism of extreme acceleration of charged particles
along short distances: electrons “surf” a plasma wave (PW) driven by a
very short laser pulse, e.g. in a supersonic diluted gas jet.

Dynamics is ruled by Maxwell equations coupled to a kinetic theory for
plasma electrons, ions. Today these eqs can be solved via more and more
powerful PIC codes. However such simulations involve huge costs for
each choice of the input data. Therefore it is crucial to run them after a
preliminary selection of the input parameters based on a simpler model.



Given a very short & intense plane-wave laser pulse travelling ∥ z⃗ , here we
propose a multi-step preliminary analytical procedure to tailor the initial plasma
density ñ0(z) to the pulse, so as to control:

1. the formation of the plasma wave (PW);

2. its wave-breaking (WB) at density inhomogeneities; ;

3. the self-injection of low-charge bunches of plasma electrons in the PW by
the first WB at the density down-ramp;

4. to maximize the initial stages of the LWFA of the latter.

To this end, we invert our resolution procedure of the following direct problem :
given ñ0(z) and laser pulse, determine the motion of the plasma electrons.
Such a resolution is based on a multi-stream, fully relativistic plane model,
which is valid as long as the pulse depletion can be negleted.

To make the inversion formulae maneagable, we stick to slowly varying ñ0(z).

We check the effectiveness of the ñ0 resulting from the inversion formulae, and
can then further improve it by fine-tuning, solving again the direct problem
numerically (first the eqs of our plane model, then applying PIC codes).

Finally, we determine the detailed density and energy distribution of the WFA
electrons by FB-PIC simulations.



Setup & Plane model

Input = nontrivial initial data:

a) the function ñ0(z) ≥ 0, with ñ0(z)=0 if z<0, ñ0(z)≤nB <∞ if z>0,
yielding the initial electron and proton densities ne , np:

ve(0,x)=0, ne(0,x)=np(0,x)= ñ0(z); (1)

b) the vector-valued function ϵ⊥(ξ) yielding the initial laser-pulse EM fields:

E(t, x) = ϵ⊥(ct−z), B = B⊥ = k×E⊥ if t ≤ 0, (2)

support(ϵ⊥) ⊆ [0, l ] with l ≲
√
πmc2/nBe2: the pulse reaches the plasma at

t=0 & overshoots all e− before their z reach the 1st minimum< 0 (ES pulse).

Figure 1: Here: ñ0(z) has down-ramp + plateau n̄ as a); ES, SMM pulse as b)



1-particle kinematics & some electrodynamics

As every particle travels slower than light, ξ̃(t) = ct−z(t) grows strictly, and
ξ = ct−z can replace t as the independent parameter along its worldline (WL)
λ (in Minkowski space) and in its equation of motion (EoM). Clock=pulse.
WL λ′: v z → c as t → ∞ ⇔ ξ → ξf < ∞.

We will use: CGS units; dimensionless β≡ ẋ/c, γ≡1/
√

1−β2, 4-velocity

u=(u0, u)≡(γ, γβ)=
(

p0

mc2
, p
mc

)
, s≡γ−uz > 0. s→0 implies uz →∞.

Fluid: X 7→ x are 1-to-1 at all t, ξ, i.e. worldlines (WLs) do not intersect.

Eulerian observables f (t, x) = f̃ (t,X) = f̂ (ξ,X) Lagrangian observables.



How to simplify the Lorentz EOM

ṗ(t) = q ϵ⊥[ct−z(t)
]
+ kqE z(t, z) + (q/c) v(t)×

{
k×ϵ⊥[ct−z(t)

]}
? (3)

Changing variables t 7→ ξ, pz 7→ p− ≡ p0/c − pz = mc s transforms (3) into

p̂⊥′(ξ) = qϵ⊥(ξ)/c, ŝ ′(ξ) =
−q

mc2
Ě z(ξ, ẑ) (4)

(ϵ⊥ ̸⊃ unknown z(t)). If E z = 0 and p(0) = 0 these are immediately solved by

s = 1, p̂⊥(ξ) = (q/c)
∫ ξ

−∞dζ ϵ⊥(ζ) =: (−q/c)α⊥(ξ), ⇒ pz = p⊥2/2mc.

Fluid: X 7→ x are 1-to-1 at all t, ξ, i.e. worldlines (WLs) do not intersect.

Eulerian observables f (t, x) = f̃ (t,X) = f̂ (ξ,X) Lagrangian observables.



Collisionless plasma kinematics

We regard ions as immobile. No collisions ⇒: all e− having the same position
X and velocity V at t = 0 will have the same position xe(t,X,V) and velocity
ẋe(t,X,V) at t > 0. Since here V = 0 for all e−, then xe = xe(t,X). The
hydrodynamic regime (HR) lasts as long as X 7→ x are 1-to-1, i.e. WLs do not
intersect. Afterwards: multistream or post-hydrodynamic regime (PHR).

HR: Eulerian observable f (t, x) = f̌ (ξ, x) = f̃ (t,X) = f̂ (ξ,X) Lagrangian obs.



Plane collisionless multistream plasma model

Transverse plane symmetry implies:
Eulerian fields can depend only on t, z ;
their Lagrangian counterparts and the displacements
∆e ≡ xe(t,X)−X can depend only on t,Z ;
their “hatted” Eulerian/Lagrangian counterparts can
depend only on ξ, z , resp. ξ,Z .

The rigid motion of each electrons’ transverse sheet
(=very thin layer) is codified by ze(t,Z) [or ẑe(ξ,Z)].

Different sheets may cross each other (see e.g.
[Dawson62]); the HR lasts as long as this does not
occur.

Maxwell equations ∇· E=4πj0, 1
c
∂tE

z+4πj z=(∇∧B)z=0 are solved by

E z(t, z)=4πe
[
Ñ(z)−Ne(t, z)

]
, (5)

Ñ(z) ≡
∫ z

0

dζ ñ0(ζ), Ne(t, z) ≡
∫ ∞

0

dZ ñ0(Z) θ
[
z − ze(t,Z)

]
. (6)

[GF,PT24] Ñ(z), Ne(t, z) resp. are the #(protons), #(electrons) per unit
transverse surface with z ′≤z at time t.



Simplest gauge choice: also A = (A0,A) depends only on t, z , and

A⊥(t, z) ≡ −c

∫ t

−∞
dt′ E⊥(t′, z) (physical observable); (7)

Since u⊥
e (0, x)=0, Lorentz eq. implies u⊥

e = eA⊥/mc2.

For t ≤ 0 A⊥(t, z) = α⊥(ct−z), α⊥(ξ) ≡ −
∫ ξ

−∞
dζ ϵ⊥(ζ). (8)

We can reformulate Maxwell eq. 2A⊥ = 4πj⊥ as the integral eq.

A⊥(t, z)−α⊥(ct−z) = −K

2

∫
dηdζ θ(η) θ (ct−η−|z−ζ|)

(
neA

⊥

γe

)
(η, ζ) , (9)

K≡ 4πe2

mc2
. Neglecting pulse depletion, A⊥(t, z) = α⊥(ct−z). The remaining

eqs to solve is the family (parametrized by Z) of ordinary Cauchy problems

ẑ ′e(ξ,Z) =
1+v(ξ)

2ŝ2(ξ,Z)
− 1

2
, (10)

ŝ ′(ξ,Z) =
e Ě z

mc2
= K

{
Ñ
[
ẑe(ξ,Z)

]
−
∫ ∞

0

dζ ñ0(ζ) θ
[
ẑe(ξ,Z)−ẑe(ξ,ζ)

]}
, (11)

ẑe(0,Z) = Z , ŝ(0,Z) = 1, (12)

in the unknowns ŝ(ξ,Z), ẑe(ξ,Z). Here v(ξ) ≡
(
eα⊥(ξ)/mc2

)2
.



HR: dynamics reduced to decoupled Hamiltonian ODEs for 1-dim systems

As long as the HR holds, eqs (10-12) for different Z ’s decouple and become eqs

∆̂′ =
1+v

2ŝ2
− 1

2
, ŝ ′ = K

{
Ñ
[
Z+∆̂

]
−Ñ(Z)

}
, (13)

∆̂(0,Z) = 0, ŝ(0,Z) = 1 (14)

[GF18] in the unknowns ∆̂(ξ,Z) ≡ ẑe(ξ,Z)−Z , ŝ(ξ,Z), ŝ(ξ,Z). For each
Z ≥ 0 (13) are Hamilton equations q′ = ∂Ĥ/∂p, p′ = −∂Ĥ/∂q of a 1-dim
system: ξ, ∆̂,−ŝ play the role of t, q, p, and the Hamiltonian up to mc2 reads

Ĥ(∆̂, ŝ, ξ;Z) :=
ŝ2 + 1+v(ξ)

2ŝ
+ U(∆̂;Z),

U(∆;Z) :=K

∫ ∆

0

dζ (∆−ζ) ñ0(Z+ζ) .

(15)

For ξ > l v=const, Ĥ=h(Z)=const, (13) are autonomous and can be solved
by quadrature; if Z>0 the solutions are periodic in ξ; ξH(Z) ≡ period.

All other unknowns can be expressed via
(
∆̂, ŝ):

û⊥=
e α⊥(ξ)

mc2
, ûz =

1+û⊥2−ŝ2

2ŝ
, γ̂=

1+û⊥2+ŝ2

2ŝ
, (16)

x̂⊥
e (ξ,X)− X⊥ =

∫ ξ

0

dη
û⊥(η)

ŝ(η,Z)
, ẑe(ξ,X)− Z = ∆̂(ξ,Z). (17)



Special case: ñ0(Z ) ≡ n̄ = const

If ñ0(Z) ≡ n̄ = const, then (13) and its solution are in fact Z -independent:

∆′ =
1+v

2s2
− 1

2
, s ′ = M∆, ∆(0)=0, s(0)=1, (18)

M≡ Kn̄=
ω2
p

c2
, U(∆,Z)= M

2
∆2: relativistic harmonic oscillator. h(Z ;ñ0)= h̄(n̄).

a) Linearly polarized gaus-
sian pulse with peak ampli-
tude a0≡λeE⊥

M /2πmc2=2,
lfwhm = 10λ. We consider
l=40λ and cut tails outside
|ξ−l/2|< l/2.

b) Corresponding solution
of (18) if ñ0(z) = n̄j ≡
ncr/268 (ncr =πmc2/e2λ2 is
the critical density); as a re-
sult, E/mc2 ≡ h=1.28.

ŝ is insensitive to fast
oscillations of ϵ⊥ !

Figure 2



a) “Optimal” ñ0(z) for the
above pulse: n̄= n̄j = ncr/268,
nb = 1.28 × n̄j , zB = 120λ,
zs−zB =6.6λ [GF 2023].

b) WLs of e− with Z =
0, λ,..., 156λ are obtained solv-
ing (13-14) and look as plot un-
til they first intersect (circles),
⇒ WBs. The black WL of the
e− self-injected by the earliest
WB holds for all t; after WB it
is ruled by (22).
The yellow region is filled only
by ions; in the pink region (0<
ξ < 40λ) the pulse modulating
intensity ϵ2s is nonzero; in the red
region (|ξ−20λ| < 5.25λ) ϵ2s is
above half maximum.

c) Zoom of the blue box in a).

Figure 3



Hydrodynamic regime up to wave-breaking

The HR holds as long as Ĵ ≡
∣∣ ∂x̂e
∂X

∣∣= ∂ẑe
∂Z

> 0. For ξ > l [GF et al 23]

Ĵ(ξ+kξH ,Z) = Ĵ(ξ,Z)−k
∂ξH
∂Z

∆′(ξ,Z), ∀k ∈ N, Z ≥ 0, (19)

⇔ Ĵ(ξ,Z) = a(ξ,Z) + ξ b(ξ,Z), (20)

where b ≡ − ∂ log ξH
∂Z

∆̂′, a ≡ Ĵ − ξ b are ξH-periodic in ξ, and b has zero mean
over a period (apply ∂Z to ∆[ξ+nξH(Z),Z ]=∆(ξ,Z), use ξH-periodicity of ∆′).

By (19) we can extend our knowledge of Ĵ from [l , l+ξH [ to all ξ ≥ l .

Figure 4: Ĵ, σ̂ vs. ξ for Z = Zb ≃ 121.6λ and input data as in Fig. 3.

Differentiating (13-14) w.r.t. Z one finds that Ĵ, σ≡ ∂ ŝ
∂Z

fulfill

Ĵ ′ = −1+v

ŝ3
σ̂, σ̂′ = K

(
ň Ĵ−ñ0

)
,

Ĵ(0,Z) = 1, σ̂(0,Z) = 0,
(21)

where ň(ξ,Z) ≡ ñ0 [ẑe(ξ,Z)]. Studying (21) one finds sufficient conditions on
ñ0, ϵ

⊥ [GF et al 2022-23] for the first WB to occur after the laser-plasma
interaction (ξ> l) and be controlled via (19).



Maximizing the WFA of (self-)injected e−

Motion of test electrons in the plasma wave

The eqs for a test e− sheet injected in the PW behind the pulse reduce to

ẑ ′i =
1−ŝ2i
2ŝ2i

, ŝ ′i = M∆ (22)

along the density plateau, and ŝi (ξ)−s(ξ) = δs≡si0−s(ξ0) = const, cf (18b).
If δs < −sm (trapping condition), then ∃ξf >ξ0 s.t. ŝi (ξf ) = 0, e− is
trapped & accelerated in a trough of the PW. As t→∞

zi ∼ ct, γi ≃ F zi/λ
zi→∞

−−−−→ ∞, (23)

F ≡Kn̄λ |∆(ξf )|; reliable as long as pulse depletion is negligible: zi ≤ zpd .

Fixed n̄, if δs=−1, then |∆(ξf )| = |∆m| = ∆M , and F is maximal:

γi (zi ; n̄) ≃
√

j(n̄) zi/λ; (24)

here j(n̄) ≡ n̄
[
h̄(n̄)−1

]
8π2/ncr , h̄(n̄) = final energy transfered by the pulse

to the plateau plasma electrons. Physically, |∆(ξf )| = ∆M means that the test
sheet tends to the transverse plane of the travelling bucket where |E z | is
maximal. Below ν≡n0/ncr .



Self-injection & maximal WFA by fixing ñ0 in 4 steps

Step 1: Computing h̄(ν), j(ν).
(We interpolate 200 points; few
seconds via Mathematica).

Step 2: Optimal plateau density n̄.
If the depth available for WFA is zi ≤
zpd(νj), set n̄/ncr =νj ≡max{j(ν)}:

γM
i (zi ) ≃

√
j(νj) zi/λ. (25)

Step 3: ñ0 with optimal down-ramp
for self-injection, LWFA.

ñ0(Z) = n̄+Υ(Z−zs), zB ≤ Z ≤ zs ,

Υ = n̄−nB
zs−zB

. Let (ξb,Zb) be the pair

(ξ,Z) with smallest ξ s.t. Ĵ(ξ,Z)=0
The Zb e− are the fastest injected &
trapped in a PW trough by the 1st
WB. We fix Υ, zB requiring: δs = −1,
so that (24) applies; no WBDLPI.

Figure 5: h̄−1 (energygain per plasma
e−) and j by the pulse of fig. 2a, vs. ν

Figure 6: Optimal density associated
to the pulse of fig. 2a, used in fig. 3.

Step 4: Choosing an up-ramp of ñ0 out of the ∞-ly many ones growing
from 0 to nB and preventing WB for ξ<ξb; ñ0(z) ≃ O(z2) [GF et al 2022-23].



Figure 7



Examples

a) Another “optimal”
ñ0(z) for the above
pulse: n̄= n̄j =ncr/268,
nb=1.32× n̄j ,
nB =1.42× n̄j ,
zB =60λ, zs−zB =6.2λ.

b) WLs of e− with Z=
0, λ,..., 95λ as plot are
Ok until they first inter-
sect (circles), ⇒ WBs.
The black WL of the e−

self-injected by the ear-
liest WB is Ok for all t.
Nearly maximal F =
0.286. If λ = 0.8µm,
this leads to a re-
markable energy gain of
0.182MeV per µm.

c) Zoom of blue box.

Figure 8



Choosing the input data of fig.s 3, 8, we resp. find SLIDESHOWS



3D effects, discussion and conclusions

Summarizing, the steps of our preliminary optimization process are:

1. finding the final energy h̄ transfered by the pulse to the plateau plasma
electrons and j = 8π2

[
h̄−1

]
n̄/ncr as functions of the density n̄;

2. finding the ‘optimal’ value n̄j of n̄ maximizing j(n̄);

3. finding the ‘optimal’ length zB−zs and slope Υ of the density down-ramp;

4. adjusting the up-ramp (z < zB) of ñ0(z) to avoid WB for ξ < ξb.

Range of applicability of the model?

The depletion of the pulse is negligible in the tilted (rather long) rectangle

0 ≤ ct − z ≤ l , 0 ≤ ct + z ≲ mc2/e2n̄λ (26)

Pulse cylindrically symmetric around z⃗ with waist R: by causality our results
hold strictly in the green causal cone trailing the pulse, approximately nearby.

In particular, if the pulse has maximum at ξ = l
2
, and

R > ξb −
l

2
, R ≫ a0λ

2π

[
h̄+

√
h̄2−1

]
(27)

then the X ≃ (0,0,Zb) e
− keep in that cone and move as

above: same maximal WFA, as far as pulse not depleted.



Apply our optimization procedure to the pulse of Fig. 2a (a0=2, lfwhm=10λ):
we find the initial density ñ0(z) and the WLs of Fig. 3; F = 0.28.

Ti-sapphire laser: λ≃0.8µm; ‘moderate’ peak intensity I=1.7×1019W/cm2

yields the remarkable energy gain 1.8 GeV/cm of the Zb electron (black WL).

Good agreement with 2D FB-PIC simulations (courtesy of P. Tomassini):

THANK YOU FOR YOUR ATTENTION!
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