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Outline

• Benefits from longer wavelengths for studies of 
laser-plasma interactions at near critical density

• Hole boring and shock waves

• Probing current filamentation instability

• Laser channeling
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Benefits from longer wavelengths: 𝒂𝟎~λ

𝑎0 scales favorably with 
wavelength

𝑎0 =
𝑒𝐸0

𝑚𝑒𝑐
⋅

𝜆

2𝜋𝑐

I.V. Pogorelsky et al. / Nuclear Instruments and Methods in Physics Research A 620 (2010) 67

• As the result, TNSA demonstrated with     

1016 W/cm2 at 10 m is the same as with 

1018 W/cm2 solid state laser.

• This means also that 10-m CO2 laser of the 

same power and energy as 1-m laser can 

produce 100x more TNSA ions.
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𝑛𝑐 = 𝛾
𝜖0𝑚𝑒
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⋅

4𝜋2𝑐2

𝜆2

• Critical density of a plasma scales favorably 

with wavelength opening access to new 

acceleration mechanisms such as radiation 

pressure acceleration in gases. 

gas

• Optical
      interferometry

Benefits from longer wavelengths: 𝒏𝒄𝒓~λ−𝟐

• Shock wave 
acceleration

• Monoenergetic 
ion beams



5

Radiation Pressure Driven Acceleration

vacuum plasma𝒏𝒆 ≥ 𝜸𝒏𝒄𝒓
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Parameter space for RPA
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Separation line between 
radiation pressure and 
thermal pressure dominated 
regimes: 𝑃𝑟𝑎𝑑 = 𝑃𝑡ℎ
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Another boundary 
condition due to 
plasma 
transparency:

𝑛𝑒 = 𝛾𝑛𝑐𝑟

𝛾 = 1 + Τ𝑎0
2 2with

𝑃𝑟𝑎𝑑 > 𝑃𝑡ℎ 𝑃𝑟𝑎𝑑 < 𝑃𝑡ℎ

Relativistically 
underdence plasma

Parameter space 
explored at ATF 
so far



Current status of proton acceleration at ATF
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Ettlinger+ 

(in preparation)

a0 ~ 1- 2.5 Chen+, Phys. Plasmas 30, 053106 (2023) ni ~ (1-4) ncr
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Radiation pressure dominant - hole 
boring radiation pressure 
acceleration

Closer to hermal pressure dominant -

possible to form a collisionless shock 

structure, accelerating ions

Radiation Pressure Driven Acceleration



Hole boring and shock regimes
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How can we experimentally access relevant 
physics for ion generation?
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~30 fs ~10 μm ~1019 cm-3

Convenient for 
optical probing

LongWave-IR
Easier to resolve 
experimentally

Collisionless laser plasmas can be defined using reference frequency:

Time Length Density

ǁ𝑡 = 𝜔𝐿𝑡 𝑥 =
𝜔𝐿

𝑐
𝑥 𝑛 =

𝑛

𝑛𝑐𝑟
∝

1

𝜔𝐿
2 𝑛

~3 fs ~1 μm ~1021 cm-3

Near-IR
Too short Too small Too dense

These scales are difficult to access experimentally



Case study 1: Probing current filamentation 
instability 
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He gas jet

5 J, 3 ps, 10 μm CO2 laser
50 μm focal spot
5x1016 W/cm2 on target
a0 ~ 2



Observed filamentation beyond critical surface
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Intense laser

Blast-wave driven 

by prepulse at -

25 ns

• Current Filamentation 

Instability

• CFI growth rate:

where

• Filament width and 

period

𝛼 =
𝑛𝑏

𝑛𝑐
≈ 0.1

𝜆𝑓𝑖𝑙 ≈ 2𝜋
𝑐

𝜔𝑝
≈ 10𝜇m

He plasma, 1 nc

Filaments 

length ~ 800 μm, 

width ~ 10 μm



Transverse filament size reduces with 
increasing density
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t = 54 ps

• At lower density, no filaments generated

– Density too low and laser penetrates through blast wave 

with no localized energy deposition

• At highest density, filaments penetrate not as far

– at ni = 4.2 ncr, ~ 400 μm (800 μm @1.1 ncr )

– Transverse filament size smaller for higher density



2DPIC shows the generation of current 
filamentation instability
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Using the output from hydrodynamic simulations of blast wave: 



Filaments are seen expanding in time long 
after end of LPI
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t = 260 ps

Te = (400±200) eV

rf0 = (12±3) μm• Filament diameter increases 

in time after LPI

• Expansion depends on 

background Te ~ 400 eV

(cs~ 1.5 x 105 m/s)

• He ions observed up to 1 

MeV (> 107 m/s); 



Case study 2: Investigation of channeling in 
near critical density plasma
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t = 2 ps

500 μm

Shadowgraphy at two times from the same shot:

t = 7.8 ps Generation of a laser-

driven channel

~1 ncr hydrogen plasma



We measure temporal evolution of channel 
formation
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Ions also unexpectedly generated from 
channeling regime
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Low energy, broadband ions generated from sheath 

acceleration at the rear of the plasma
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• ATF offers a testbed for studies of fundamental laser-

plasma interactions (LPI) driven by longwave-IR laser

• Presented results include:

• Investigation of current filamentation instability

• Channeling in near-critical-density plasma

• Additional and new capabilities:

• electron linac for plasma fields radiography

• fs Ti:S laser greatly improves optical resolution

• CO2 laser upgrade to multi-TW femtosecond regime

• Possibilities to look at many facets of critical density LPI

Summary & Outlook
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