Ion acceleration and beam quality preservation of structured targets using **PetaWatt-class lasers via Hole- Boring Radiation Pressure Acceleration**

J. Kim¹, R.Rajawat¹, T.Wang¹, and G. Shvets¹

¹School of Applied and Engineering Physics, Cornell University, NY 14853, USA

Introduction to Converging Laser Ion Accelerators (CLIA) [1]

- High-power laser impinging on an overdense target can generate a monoenergetic ion flux via Hole-Boring Radiation Pressure Acceleration (HB-RPA) mechanism[2].
- HB-RPA accelerates the ions perpendicular to the front surface

Analytic description of surface evolution

If the laser transverse intensity profile is known, surface evolution can be analytically calculated

1. Plane laser (very large spot size): surface shape preservation over several microns

Coasting stage= competition between focusing and ion diffusion[3]

$\phi(r) \propto r^2, c_{ion} \sim \sqrt{\frac{Z}{m_i}} T_e$

Hot electrons cause ion diffusion, countering the ion focusing

- Curved front surface shape + HB-RPA= converging monoenergetic flow of ions!

Hole-Boring Radiation Pressure Acceleration (HB-RPA)

HB-RPA = Momentum balance between photon and outgoing ion momentum flux

- Laser "snow-plows" a continuous flux of ions at the laser-plasma interface moving with v_{s0}
- "Fresh" plasma accelerated every instant to same velocity v_{i0}

 $v_{\rm s} \sin \phi_{\rm s}$

$\Theta(r) \rightarrow \Theta, v_{s0}(r) \rightarrow v_{s0}$ $x(r,t) = x(r,0) + v_{s0}t$

Persistence of converging surface shape enables acceleration and focusing of high-charge high-flux ion beams to the same focal length

X/λ

2. Gaussian laser: surface curvature flattening

Analytical estimate agrees well with first-principles PIC results!

3D PIC simulations of CLIA

Beam quality modification: laser polarization, target structure, and target composition

Elliptically polarized laser =beam quality degradation

Electron Spectra

Ion Spectra 500fs 50fs 1.37 IN/dE 30 60 30 E_L(MeV) E_k(MeV)

Acceleration not significantly affected by polarization

JxB electron heating = ion spectra degradation in coasting

Additional material on path=beam quality improvement

HB-RPA at non-normal incidence: reflection off a relativistic moving mirror

 Radiation pressure/ion acceleration direction is still perpendicular to the front surface

> Parabolic front surface =simultaneous focusing

3D Full PIC **(**Smilei) parameters
Cryogenic hydrogen target:
$$\rho \sim 0.1g/cm^3$$

 $R_c = 40\mu m, d = 5\mu m, r_t = 8\mu m$
Laser: $\lambda = 1\mu m$,10PW(on target), 40fs(400J), CP

- ion beams accelerated via HB-RPA mechanism during the acceleration stage
- The accelerated ions co-propagate with electron population neutralizing them during the coasting stage, contracting by factor of several times

- Target hot electrons replaced by cold buffer electrons
- Ion spectra drastically improved for target with buffer due to reduced ion diffusion during coasting

Multispecies =Z/m dependent beam modification

- For multispecies target, higher Z/m ions interact more strongly with the hot electrons and are further accelerated
- This comes at the expense of beam emittance increase

Summary

- Parabolic front surface + HB-RPA = monoenergetic multispecies focused ion beams
- Analytic theory describes acceleration and surface evolution
- $O(GJ/cm^2)$ energy flux at arbitrary focal length achieved
- Post-acceleration ("coasting" stage) governed by ion diffusion

Monoenergetic ions focus simultaneously on time t_{foc} to focal point $x_{foc} = R_c$

- Monoenergetic ion beam spectra deteriorates significantly during coasting stage
- Ion beam focusing leads to more than an order of magnitude flux increase, acquiring $O(GJ/cm^2)$ energy flux

mediated by hot electrons

Three ways to control coasting stage: laser polarization, buffer, and multispecies target

[1]Kim et al, arXiv:2310.08432 [2] Naumova et al, PRL 102 025002(2009), Robinson et al, PPCF 51 024004 (2009) [3] Dorozhkina et al, PRL 81 13 (1998),

This work was supported by DOE Grant No. DE-SC0019431 and NSF Grant No. PHY-2109087

2024 Advanced Accelerator Concepts Workshop Jul 21-26, 2024