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Introduction to Converging Laser lon Analytic description of surface evolution Coasting stage= competition between
Accelerators (CLIA) [1] focusing and ion diffusion|3]
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Pressure Acceleration (HB-RPA) mechanism[2]. preservation over several microns Colder electrons= better focus (and less energy spread)
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* Radiation pressure/ion acceleration direction is still I | - f/x \
erpendicular to the front surface '\ | |
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* lon beam focusing leads to more than an order of magnitude flux
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