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OUTLINE

▪ Motivation

▪ Short Pulse Acceleration

– Short pulse → High gradient → Compact Accelerators

– Understanding RF breakdown phenomena with short RF pulses

▪ Dark Current Modeling

– Two breakdown processes under investigation:

• Field emission

• Multipacting

– Two approaches: Analytical modeling + PIC simulations

▪ Conclusions
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MOTIVATION 

oRecent experimental demonstration of high accelerating gradient in RF structures 

powered by short RF pulses at AWA

o Close to 400 MV/m achieved on the surface of an X-band photocathode with 

~9 ns RF pulses

oRF breakdown with nanosecond-long pulses has not been carefully characterized

o Previous studies mostly cover a range of ~100 ns to ~1 𝜇s

oGoals:

o Understanding of RF breakdown physics on various time scales

o Experimental strategies to mitigate breakdown using short pulses
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SHORT-PULSE ACCELERATION
▪ Evidence of the benefits of short-pulse acceleration from:

– Empirical scaling law

– Early experiments Breakdown rate (BDR) ∝ 𝐸30𝜏5
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S. Döbert et al., SLAC-PUB-10551 (2004) 

@NLCTA, 11.424 GHz

W. Wuensch et al., Proc. PAC 2003, ROAA011 
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DARK CURRENT STUDIES

Dark current
➢ Unwanted current in accelerators that limits the gradient

Consequences
➢ Energy loss and beam instabilities

➢ Emittance growth

➢ Secondary radiation

Sources of dark current 
➢ Field emission

➢ Secondary electron emission

➢ Multipacting
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▪ Field emission of electrons
➢ Fowler-Nordheim field emission model

o  Solution of Schrödinger equation by considering an electron in conduction band in presence of 

triangular potential.

THEORY OF FIELD EMISSION

Emission current
Work function

Electric Field
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Emission current density vs 

field gradient plot.



MULTIPACTING

▪ Multipacting resonance

– Synchronization between electron motion 

and RF field

→ Exponential growth of dark current

▪ Two conditions for electron multipactor

– Resonant electron motion

– Average secondary electron yield (SEY) > 1

▪ Secondary electron emission

– SEE yield depends on incident electron 

energy

– Multipacting often plays a larger role at 

lower gradients
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SEY -  Vaughan

Parallel plate model of multipacting



ANALYTICAL MODELING OF MULTIPACTOR
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Good approximation of the 

realistic cavity geometry:

pill-box cavity

M
V

/m

Field distribution in the X-band photocathode

Vacuum model of 

the x-band 

photocathode 

cavity



Phase convergencePosition convergence SEY convergence

ANALYTICAL RESULTS OF MULTIPACTOR

E0 = 52 MV/m E0 = 37 MV/m
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DARK CURRENT SIMULATIONS
▪ Short-Pulse photocathode

– X band, 1.5 cell RF gun

– Operating in  mode, 11.7 GHz

– Strongly over-coupled
 

Normalized longitudinal electric field 

distribution in the X-band photocathode 

cavities at 11.7 GHz
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6  ns long FWHM RF pulse used 

to excite the cavities

Time probe signal nearby 

photocathode surface with 400 MW 

input power



SIMULATIONS OF MULTIPACTING

The number of multipactor electrons with 

Surface I

Multipacting electron trajectories in 

surface I sidewall
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The number of multipactor electrons with 

surface I sidewall with 8-2-2 ns pulse

The number of multipactor electrons with 

surface I sidewall with 3-3-3 ns pulse

DEPENDENCE ON PULSE SHAPE
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FIELD EMISSION SIMULATIONS

Field emitted electrons from the iris

• Dark electrons blocked on the path

Field emitted electrons from photocathode surface

At Field 120 MV/m and beta 5



▪ Short-pulse acceleration is promising

– An 11.7 GHz traveling wave gun powered by short pulses recently 

demonstrated at AWA with close to 400 MV/m on the cathode

▪ Modeling and experimental characterization of RF breakdown phenomena with 

short nanosecond RF pulses

– Multipacting simulations

• Comparisons of analytical and numerical dark current results

• Multipactor current growth depends on the pulse shape

– Field emission simulations

▪ Future plans: Study on plasma related processes in the cavity, improved 

diagnostics

CONCLUSIONS
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MULTIPACTING ON CAVITY SIDEWALLS

Fig: The number of multipactor electrons with 

Surface II
Fig: Multipactor electron trajectories 

in surface II sidewall
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MULTIPACTING ON CAVITY SIDEWALLS

Fig: Multipactor electron trajectories in 

full cell sidewall

Fig: The number of multipactor electrons with 

full cell sidewall
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N = 4

N = 5

N = 7



✓ Motion equations are 

integrated for Vr and Vz to 

obtain r and z applying initial 

condition

✓  Vaughan’s secondary emission 

model is implemented to track the 

secondary emitted particle and SEY.

ANALYTICAL MODELING OF MULTIPACTOR
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