July 25th, 2024

Analytical and Numerical Studies of Dark Current in Radiofrequency Structures for Wakefield Acceleration

Gaurab Rijal¹ Xueying Lu^{1,2}, Michael Shapiro¹, John Power² ¹Northern Illinois University, Dekalb, IL, USA ²Argonne National Laboratory, Lemont, IL, USA

Argonne National Laboratory is a
U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

Northern Illinois
University

OUTLINE

- Motivation
- Short Pulse Acceleration

15th International Particle Accelerator Conference.Nashville, TN **JACoW Publishing** ISBN: 978-3-95450-247-9 ISSN: 2673-5490 doi: 10.18429/JACoW-IPAC2024-TUPR1 DARK CURRENT SIMULATIONS IN ACCELERATING STRUCTURES **OPERATING WITH SHORT RF PULSES** G. Rijal¹, M. Shapiro¹, J. Power², and X. Lu^{1,2*}

¹Northern Illinois University, DeKalb, IL, USA ²Argonne National Laboratory, Lemont, IL, USA

- $-$ Short pulse $→$ High gradient $→$ Compact Accelerators
- Understanding RF breakdown phenomena with short RF pulses
- Dark Current Modeling
	- Two breakdown processes under investigation:
		- Field emission
		- Multipacting
			- Two approaches: Analytical modeling + PIC simulations
- Conclusions

Aroonne National Laboratory is a V U.S. Department of Energy laborator

MOTIVATION

o Recent experimental demonstration of high accelerating gradient in RF structures powered by short RF pulses at AWA

o Close to 400 MV/m achieved on the surface of an X-band photocathode with ~9 ns RF pulses

o RF breakdown with nanosecond-long pulses has not been carefully characterized \circ Previous studies mostly cover a range of ~100 ns to ~1 μ s

o Goals:

- o Understanding of RF breakdown physics on various time scales
- o Experimental strategies to mitigate breakdown using short pulses

SHORT-PULSE ACCELERATION

▪ Evidence of the benefits of short-pulse acceleration from:

DARK CURRENT STUDIES

Dark current

➢ Unwanted current in accelerators that limits the gradient

Consequences

- \triangleright Energy loss and beam instabilities
- ➢ Emittance growth
- ➢ Secondary radiation

Sources of dark current

- ➢ Field emission
- ➢ Secondary electron emission
- ➢ Multipacting

THEORY OF FIELD EMISSION

- **Example 1 Field emission of electrons**
	- ➢ Fowler-Nordheim field emission model
		- o Solution of Schrödinger equation by considering an electron in conduction band in presence of triangular potential.

MULTIPACTING

- Multipacting resonance
	- Synchronization between electron motion and RF field
	- \rightarrow Exponential growth of dark current
- Two conditions for electron multipactor
	- Resonant electron motion
	- Average secondary electron yield (SEY) > 1
- **Execondary electron emission**

onne National Laboratory is a

- SEE yield depends on incident electron energy
- Multipacting often plays a larger role at lower gradients

U**niversitv**

ANALYTICAL MODELING OF MULTIPACTOR

ANALYTICAL RESULTS OF MULTIPACTOR

DARK CURRENT SIMULATIONS

- Short-Pulse photocathode
	- X band, 1.5 cell RF gun
	- Operating in π mode, 11.7 GHz
	- Strongly over-coupled

Normalized longitudinal electric field distribution in the X-band photocathode cavities at 11.7 GHz

10

11

DEPENDENCE ON PULSE SHAPE

The number of multipactor electrons with surface I sidewall with 3-3-3 ns pulse

The number of multipactor electrons with surface I sidewall with 8-2-2 ns pulse

FIELD EMISSION SIMULATIONS

Field emitted electrons from the iris

Dark electrons blocked on the path

Field emitted electrons from photocathode surface At Field 120 MV/m and beta 5

CONCLUSIONS

- Short-pulse acceleration is promising
	- An 11.7 GHz traveling wave gun powered by short pulses recently demonstrated at AWA with close to 400 MV/m on the cathode
- Modeling and experimental characterization of RF breakdown phenomena with short nanosecond RF pulses
	- Multipacting simulations
		- Comparisons of analytical and numerical dark current results
		- Multipactor current growth depends on the pulse shape
	- Field emission simulations
- **Euture plans:** Study on plasma related processes in the cavity, improved diagnostics

ACKNOWLEDGEMENTS

▪ NIU team

•Brendan Leung •Calcifer Phillips •Dillon Merenich •Gaurab Rijal •Michael Shapiro •Omkar Ramachandran •Salih Colmekci •Xueying Lu

▪ AWA team at ANL

- •Scott Doran
- •Gongxiaohui Chen
- •Wanming Liu
- •Chunguang Jing
- •John Power
- •Charles Whiteford •Eric Wisniewski

NIU team

This research was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award DE-SC0021928.

The work at the AWA was funded through the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.

17

U.S. DEPARTMENT OF Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory

ANALYTICAL MODELING OF MULTIPACTOR

The motion equations are:

$$
m\frac{d\vec{v}}{dt} = -e\vec{E} - e\mu_0 \vec{v} \times \vec{H}
$$

$$
\vec{V} \times \vec{H} = -\vec{r}V_z H_\theta + \vec{Z}V_r H_\theta
$$

$$
m\frac{dv_z}{dt} = -eE_z - e\mu_0 v_r H_\theta
$$

$$
m\frac{dv_r}{dt} = -eE_r + e\mu_0 v_z H_\theta
$$

 \checkmark Motion equations are integrated for V_{r} and V_{z} to obtain r and z applying initial condition

The Secondary Electron Yield (SEY) is calculated as follows:

$$
\sigma = \sigma_m \left[w \exp(1 - w) \right]^k
$$

where
$$
w = \frac{W_i}{W_m}
$$
, $k = \begin{cases} 0.56 & \text{if } w < 1 \\ 0.25 & \text{if } w > 1 \end{cases}$
\n
$$
W_m = W_{\text{max}} \left(1 + \frac{\theta_i^2}{2\pi} \right), W_{\text{max}} = 200 \text{ eV}
$$
\n
$$
\sigma_m = \sigma_{\text{max}} \left(1 + \frac{\theta_i^2}{2\pi} \right), \sigma_{\text{max}} = 2.0
$$

 \checkmark Vaughan's secondary emission model is implemented to track the secondary emitted particle and SEY.

BACKUP SLIDES

