

Multiple-Drive-Bunch Plasma Wakefield Acceleration

R = 0.87

 $R = 1 \Delta$

(Further optimization and additional driver to reach R>2)

<u>Verra</u>¹, M. Carillo¹, A. Del Dotto¹, M. Galletti², R. Pompili¹, S. Romeo¹, F. Villa¹ ,and M. Ferrario¹ ¹INFN Laboratori Nazionali di Frascati, Frascati, Italy ²University of Rome Tor Vergata, Rome, Italy

Abstract

z [m]

One ps-long bunch for each

UV pulse

GPT Simulations

z [m]

Later bunches overtakes bunches ahead

→ Bunch compression

→ Crossing of bunches

A train of charged particle bunches can resonantly drive large amplitude wakefields in plasma, when spaced by integers of one plasma wavelength, and high-transformer-ratio wakefields, when spaced by integers of half plasma wavelength and with properly ramped bunch density. We show with numerical simulations that the SPARC_LAB linear accelerator can provide a train of compressed electron bunches via the velocity bunching technique, and that the coupling between the bunch train and plasma can allow for large-amplitude wakefield excitation (resonant configuration) and for high-transformer-ratio acceleration (anti-resonant configuration). We discuss the experimental plan at SPARC_LAB.

z [m]

Afterwards, "rigid" acceleration

to 70-150 MeV