

Demonstration of proton bunch self-modulation in a discharge plasma source

Carolina Amoedo¹, N. Lopes², N. Torrado², F.Silva³, P. Muggli⁴, L. Verra^{1,*}, M. Turner¹, G. Zevi Della Porta^{1,4},J. Puček¹, M. Bergamaschi⁴, A. Clairembaud⁴, J. Mezger⁴, F. Pannell⁵, N. Van Gils⁶, E. Gschwendtner¹, M. Taborelli¹, A. Sublet¹ and the AWAKE Collaboration

> AAC'24 Workshop 22/07/2024

1CERN, Geneva, Switzerland, ²GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Butter (Deficance, Universidade de Li Kingdom,⁶University of Groningen, Groningen, Netherlands,*Present Address: INFN Laboratori Nazionali di Frascati, 00044 Frascati, Italy

AWAKE → **A**dvanced Proton Driven Plasma **WAK**efield **E**xperiment

Drives wakefields in plasma with a **proton bunch** (p⁺)

► CERN SPS proton bunch (400 GeV): **proton bunch length is ~6 cm**

To effectively excite wakefields:

► Driver bunch length ~ plasma wavelength (~ 1.2 mm for $n_e \sim 7 \times 10^{14}$ cm⁻³)

AWAKE → **A**dvanced Proton Driven Plasma **WAKE**field **E**xperiment

Drives wakefields in plasma with a **proton bunch** (p⁺)

► CERN SPS proton bunch (400 GeV): **proton bunch length is ~6 cm**

To effectively excite wakefields:

Self-Modulation Instability (SMI): Initial (transverse) 'seed' wakefields

Modulates the proton bunch into micro-bunches spaced ~ plasma wavelength

AWAKE → **A**dvanced Proton Driven Plasma **WAKE**field **E**xperiment

Drives wakefields in plasma with a **proton bunch** (p⁺)

► CERN SPS proton bunch (400 GeV): **proton bunch length is ~6 cm**

To effectively excite wakefields:

Self-Modulation Instability (SMI): Initial (transverse) 'seed' wakefields

Modulates the proton bunch into micro-bunches spaced \sim plasma wavelength

Milestones achieved by AWAKE so far

- Successful self-modulation (2017)
- **•** First electron acceleration (2018)
- Seeded self-modulation (2021) **Currently:** upgrade Rb vapour source (stabilization of Wakefield Amplitude)

Next in AWAKE

Run 2c (2028) ► two sources *modulator* + *accelerator* to allow external **e-bunch injection**[2]

Requirements *accelerator* **plasma source for AWAKE**

- Density matching with modulator (1-10x10¹⁴ cm⁻³)
- Reproducibility and stability
- **E** Longitudinal uniformity: 0.25% over 10 m

Next in AWAKE

Run 2c (2028) ► two sources *modulator* + *accelerator* to allow external e-bunch injection^[2]

Run 2d (2030) ► scalable plasma source to extend acceleration length

R&D scalable plasma sources for AWAKE

►

Requirements scalable plasma source for AWAKE

- **•** Density matching with modulator (1-10x10¹⁴ cm⁻³)
- Reproducibility and stability
- Longitudinal uniformity: 0.25% over 10 m
- Length-scalable: 10-100 m

Next in AWAKE R&D scalable plasma source for AWAKE

Helicon Plasma Source (HPS)

 \rightarrow RF wave heated plasma

Requirements scalable plasma source for AWAKE

- **•** Density matching with modulator (1-10x10¹⁴ cm⁻³)
- **•** Reproducibility and stability
- **■** Longitudinal uniformity: 0.25% over 10 m
- **■** Length-scalable: 10-100 m

Discharge Plasma Source (DPS)

 \rightarrow pulsed-DC discharge

TÉCNICO **ISBOA**

Imperial College London

Discharge plasma source (DPS)

► Double-pulse arc pulsed discharge [1]

1) high voltage ignition \rightarrow jitter <20 ns in plasma ignition

- 2) 10 to 50 µs high current pulse \rightarrow achieve plasma densities up to 2x10¹⁵ cm⁻³
- **► 1 to 10 m long plasmas (so far)**
- **► Different gases:** He/Ar/Xe at low pressure (1-100 Pa)

Pumping group

Carolina Amoedo | AAC'24 Workshop

Discharge plasma source (DPS)

► Double-pulse arc pulsed discharge [1]

1) high voltage ignition \rightarrow jitter <20 ns in plasma ignition

2) 10 to 50 µs high current pulse \rightarrow achieve plasma densities up to 2x10¹⁵ cm⁻³

- **► 1 to 10 m long plasmas** → **scalability:** series of discharges: common electrodes + current balancing magnetic circuits
- **► Different gases:** He/Ar/Xe at low pressure (1-100 Pa)

Plasma density diagnostic Longitudinally integrated interferometry

► Michelson interferometer

 \blacktriangleright Measurement arm (plasma) adds a phase shift ϕ_i proportional to the plasma density $n_e\!\!:$

$$
\phi_i = \frac{n_e}{r_e \lambda_i L}
$$

where r_e is the classic electron radius ($r_e=2.82\times\!\!10^{-15}\,m$), λ_i is the laser wavelength and L is 2x the length of the plasma. \blacktriangleright **Time-evolution of the plasma density,**

Parameters: Gas: Ar **Pressure:** 24 Pa **HV pulse**: -17 kV **High current pulse:** -6.32 kV**,** 500 A **Pulse duration:** 25 µs **Plasma length:** 10 m

line integrated over the 10 m

DPS plasma density reproducibility

► 200 consecutive discharges @ 0.1 Hz (similar to rep rate at AWAKE 2 extractions per SPS cycle)

Parameters:

Gas: Ar **Pressure:** 24 Pa **HV pulse**: -17 kV **High current pulse:** -6.32 kV**,** 500 A **Pulse duration:** 25 µs **Plasma length:** 10 m

0.2% variation gas pressure 0.5% variation peak current

► precise control of these parameters is key for reproducibility

DPS plasma density reproducibility

► Shot-to-shot plasma density variation was evaluated over **200 consecutive discharges** with longitudinal-integrated interferometry

Parameters:

Gas: Ar **Pressure:** 24 Pa **HV pulse**: -17 kV **High current pulse:** -6.32 kV**,** 500 A **Pulse duration:** 25 µs **Plasma length:** 10 m

DPS flexibility - 3 gases

► Reproducibility also studied for He (45 Pa) and Xe (16 Pa), 500 A peak current

► DPS wide range of parameters **(density/gas/length)**

Carolina Amoedo | AAC'24 Workshop

Discharge Plasma Source (3 Weeks of p+ beamtime in 2023)

10 m DPS in AWAKE

→ **unique chance to test an alternative plasma source in AWAKE:**

1. demonstration of operation of DPS source in AWAKE

- Over 3 weeks of run with protons, very smooth operation of the DPS
- ~ 22000 discharges produced, with current pulse ~ 20 ns maximum jitter and current amplitude stability < 1%

10 m DPS in AWAKE

→ **unique chance to test an alternative plasma source in AWAKE:**

- 1. demonstration of operation of DPS source in AWAKE
- **2. Self Modulation Instability (SMI) signature ?**
- 3. Study the effect of plasma density/length/gas on SMI

Streak camera observation of modulation of the p+ bunch

► usual Self Modulation Instability (SMI) signature with the DPS !

tim (ps)

Carolina Amoedo | AAC'24 Workshop

DPS at AWAKE

 \rightarrow Time delay between time the discharge and the p+ bunch \rightarrow discrete measurement of density (in time)

DPS at AWAKE

 \rightarrow Time delay between time the discharge and the p+ bunch \rightarrow discrete measurement of density (in time)

DPS at AWAKE

 \rightarrow Time delay between time the discharge and the p+ bunch \rightarrow discrete measurement of density (in time)

Plasma electron density calculated from modulation frequency of p+ bunch

 \rightarrow Time evolution of the DPS plasma density

for 3 gases: He, Ar, Xe

►easy way of changing density (requirements of R&D for scalable plasma sources)

Carolina Amoedo | AAC'24 Workshop

Comparison n^e from modulation frequency and lab interferometry

with a systematic difference of 15-17% for Ar and Xe

Carolina Amoedo | AAC'24 Workshop

Comparison n^e from modulation frequency and lab interferometry

► Agree qualitatively with a systematic difference of 15-17% for Ar and Xe

► Understanding discrepancies

► Two very different measurements

► best effort to match exact same lab/tunnel experimental conditions (gas/current) **►** in case of radial density profile: are p+ bunch/laser probing the same point? \blacktriangleright f_{mod} can differ from f_p depending on the longitudinal plasma density profile^[4]

►need of plasma uniformity measurement

[4] Morales Guzman P.I., et al. (AWAKE Collaboration). PRAB, 2021

10 m DPS in AWAKE

→ **unique chance to test an alternative plasma source in AWAKE:**

- 1. demonstration of operation of DPS source in AWAKE
- 2. Self Modulation Instability (SMI) signature
- 3. Physics Studies enabled by the DPS

→ **Next talk by L.Verra**

→ **Plenary talk, Thu 9:00, by M. Turner** → **Poster, Tuesday, by J. Mezger**

10

Conclusion

- ► **The DPS provides reproducible plasma density in different gases (He, Ar, Xe):** system with < 0.2% pressure variability and < 0.5 % current variability provides \leq 2% integrated peak density variability.
- ► Precision density measurements were performed using longitudinal integrated interferometry: **plasma electron densities ranging from 1- 20x10¹⁴ cm-3 .**
	- ► Next step**:** local plasma density measurement with Thomson scattering (this fall)
- ► **Self-modulation of a 400 GeV proton bunch was observed in DPS successfully.**
- ► The DPS offers a **large parameter flexibility (length/plasma density/gas)** allowing studies on effect of plasma ion mass on SMI, transverse filamentation instability and plasma wakefield light emission

Thank you for your attention

→ **Poster session Tuesday**

Parameters: Gas: Ar **Pressure:** 24 Pa **HV pulse**: -17 kV **High current pulse:** -6.32 kV**,** 500 A **Pulse duration:** 25 µs **Plasma length:** 10 m

Sensitivity DPS to peak current

Carolina Amoedo | AAC'24 Workshop 29

Sensitivity DPS to density

Parameters:

Gas: Xe **Pressure:** 16 Pa **HV pulse**: (primary) 3kV **High current pulse:** -6.75 kV**,** 500 A **Pulse duration:** 25 µs **Plasma length:** 10 m

Next steps

 10 m prototype: plasma light imaging \rightarrow µs time-scan discharge

(1 µs exposure time)

24 Pa 500 A

peak density: mean of all pixels of the image

Next steps

1. Thomson scattering on DPS: Fall 2024

→ **local** plasma density measurement along the source (at a specific point in time)

 \rightarrow time-scan: repeat scan at different laser-discharge delays

\leftrightarrow V Intensity (arb.u.)
 $\frac{1}{2}$ e 530 532 534 528 536 Wavelength (nm)

Thomson scattering spectrum

- Operating regime: $1x10^{18}$ $1x10^{21}$ m⁻³
- Uncertainties: 0.1 eV and \sim 10% in density

Courtesy Christine Stollberg, EPFL-SPC

DPS 1.6 m prototype

Double pulse discharge

- The ignition pulse (up to 40 kV) establishes a low-current plasma (~10 A)
- The heater pulser allows for a **high current (up to 600 A)** to achieve the plasma density target

May 2023 proton run

Operation range – Gases

The pulse generators reach the target currents in all three gases

Gas affects mostly the ignition voltage required, leading to a higher primary current for He

May 2023 proton run

Operation range – Length

The pulse generators reach the target currents in all three gases and lengths

Gas affects mostly the ignition voltage required, leading to a higher primary current for He Plasma length affects the load impedance, thus causing differences in the pulse shape

May 2023 proton run

Operation range – Double plasma

The double plasma current is equalized by a current balancing module: a high-current and small leakage inductance magnetic choke The high-frequency impedance of each winding adjusts,

forcing current symmetry between both plasmas

