

A fully plasma based electron injector for a linear collider or XFEL

Thamine Dalichaouch, Xinlu Xu, Fei Li, Frank Tsung, Warren Mori

UCLA Department of Physics and Astronomy

Advanced Accelerators Concepts July 2024, Naperville IL

Work supported by NSF Grant 2108970 and DOE grant DE-SC0010064

OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended physics/simulation models

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

Committed to open science

Open-access model

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

- The code can be used freely by research institutions after signing an MoU
- Find out more at: http://epp.tecnico.ulisboa.pt/osiris

Open-source version

Search osiris-code/osiris on GitHub

Challenges for a PBA-based XFEL or LC

Beam generation & optimal acceleration

• PBA can enable high gradient acceleration (> 1 GV/cm) and high quality beam generation for next-gen XFEL and LCs.

 $Q \sim 1 \text{ nC}, \quad \epsilon_n \sim 100 \text{ nm}$

- Main challenge: low energy spread acceleration.
- Ideal loading difficult to realize with injection.
- Dynamic beam loading (DBL) schemes (e.g., triplateau plasma) aim to flatten average field

 $\langle d_{\xi} E_z \rangle_{acc} \approx 0$

 $\xi = z - ct$

T. N. Dalichaouch et al., Phys. Plasmas, 28, 063103 (2021).

Proposed DBL scheme using PWFA

Proposed Scheme

• An unmatched e- driver (2.3 nC) selffocuses leading to injection (0.5 nC).

UCLA

- **DBL** is then induced by wake evolution.
- Transitions from underloaded $(d_{\xi}E_z > 0)$ to overloaded $d_{\xi}E_z < 0$
- DBL is dictated by pump depletion.

T. N. Dalichaouch et al., arXiv:2406.04585 (2024).

UCLA

Nonlinear theory

The loading of the wake depends on the bubble radius r_b(ξ) and beam current λ(ξ)

$$\frac{dE_z}{d\xi} = \frac{1}{2} + \frac{1}{2} \left(\frac{dr_b}{d\xi}\right)^2 - \frac{\lambda(\xi)}{r_b^2}$$

- DBL induced by wake evolution: rb decreases, space-charge force increases.
- $d_{\xi}E_z$ changes sign from positive to negative.

Drive beam dynamics responsible for DBL

UCLA

T. N. Dalichaouch et al., arXiv:2406.04585 (2024).

Example drive beam electron motion

$$\frac{d\xi}{cdt} \approx -\frac{|\mathbf{x}'|^2}{2} \quad (4)$$

• Betatron oscillations and pump depletion lead to defocusing+dephasing.

T. N. Dalichaouch et al., arXiv:2406.04585 (2024).

Which beam components drive defocusing?

• Energy factor $x(z) \sim [\gamma_{bi}/\gamma_b(z)]^{1/4}$ for drive beam electrons shown after 6.9 cm (13000 c/wp)

UCLA

Spot size expansion driven by significant pump depletion (93%+ energy loss) behind the centroid
(-1 ≤ k_pξ_i ≤ 0)

Which beam components drive dephasing?

• Dephasing $\Delta \xi$ shows in the second secon

$$\Delta \xi(z) \approx \frac{-k_p^2 r_i^2 z}{4\gamma_b (1 + \sqrt{\gamma_{bi}/\gamma_b})}$$
$$\frac{d\xi}{cdt} \approx -\frac{|\mathbf{x}'|^2}{2}$$

UCLA Unloaded wake evolution over pump depletion

wake evolution w/out trailing beam

- Spot size defocusing reduces the wake length.
- Dephasing reduces peak current and blowout radius $k_p r_m \approx 2\sqrt{\Lambda}$
- Smaller $r_b(\xi)$ along injected beam leads to stronger loading.

Loaded wake evolution over pump depletion

- Loaded wake remains fully expanded due to the space-charge force.
- Beam force $\lambda(\xi)/r_b$ increases $(r_b \downarrow)$ and slope $dr_b/d\xi$ decreases $(|p_{\perp}| \downarrow, \psi \uparrow)$.

$$\frac{dE_z}{d\xi} = \frac{1}{2} + \frac{1}{2} \left(\frac{dr_b}{d\xi}\right)^2 - \frac{\lambda(\xi)}{r_b^2} \qquad \qquad \frac{dr_b}{d\xi} = \frac{-p_\perp}{1+\psi}$$

• Beam term dominates so chirp becomes negative (overloaded).

DBL effect verified by multi-sheath model

Multi-sheath model

Verified this DBL effect using multi-sheath model for wake potential. Bubble radius and electric field obtained from 2nd order pde

$$\psi_0(\xi) = (1 + \beta')r_b^2/4, \quad E_z(\xi) = d\psi_0/d\xi$$

MS Model Ref - T. N. Dalichaouch et al., PoP 28 (063103), 2021.

Energy spread evolution of injected beam

UCLA Energy and final beam slice parameters (7 cm)

- Beam extracted with ~18.3 GeV and ~90 MeV (0.49%) after 7 cm propagation distance.
- High efficiency acceleration 56% and high transformer ratio ~1.8.

Energy/Brightness Booster		
	Drive	Trailing
Energy	10 GeV	18.3 GeV
Emittance	~ 50 um	~ 100 nm
Bn [A/m ² /rad ²]	1 0 ¹⁴	1 0 ¹⁹

UCLA

• Parameter scans show optimal DBL can be achieved by using longer drivers $\sigma_z \gtrsim 0.9 \ c/\omega_p$

- Can produce high quality multi-GeV beams:
- 20 GeV energies,
- sub-1% energy spreads.
- High efficiency (> 50%)
- High brightness (10¹⁹ A/m²/rad²)

Thank you for your time!

UCLA

Conventional beam loading

Tzoufras et. al, Phys. Plasmas 16, 056705 (2009).

Basic idea & Limitations

The loading of the wake depends on the bubble radius r_b(ξ) and beam current λ(ξ)

$$\frac{dE_z}{d\xi} = \frac{1}{2} + \frac{1}{2} \left(\frac{dr_b}{d\xi}\right)^2 - \frac{\lambda(\xi)}{r_b^2}$$

- Convetional picture: wake is "static" and trapezoidal beam flattens Ez.
- Does not work if wake evolves

Dephasing: Simulation vs Theory

• Dephasing theory vs simulation shown for drive beam electrons after z = 6.9 cm (13000 c/wp) in plasma.

- Strong agreement along most of driver except at front.
- This is because Eq. (1) assumes linear focusing force which is not valid at beam head.

$$\Delta \xi(z) \approx \frac{-k_p^2 r_i^2 z}{4\gamma_b (1 + \sqrt{\gamma_{bi}/\gamma_b})} \quad (1)$$

Modeling unloaded wake

Multi-sheath model

Can calculate the bubble radius and electric field using the multi-sheath model for the wake potential

$$\psi_0(\xi) = (1 + \beta')r_b^2/4, \quad E_z(\xi) = d\psi_0/d\xi$$

Model Ref - T. N. Dalichaouch et al., PoP 28 (063103), 2021.