

Experimental Progress of Passive Plasma Lens at FACET-II

AAC 2024 - Naperville, IL

Jul 22, 2024

Presenter: Michael Litos

Co-Authors: Constantin Aniculaesei², Robert Ariniello³, Sebastien Corde⁴, Christopher Doss⁵, Claire Hansel¹, Bernhard Hidding², Mark Hogan³, C. Joshi⁶, Alexander Knetsch³, Valentina Lee¹, Ken Marsh⁶, Brendan O'Shea³, Doug Storey³, Chaojie Zhang⁶

¹CU Boulder, ²HHU Düsseldorf, ³SLAC, ⁴Ecole Polytechnique, ⁵LBNL, ⁶UCLA

Research Funded By...

U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC001796.

This research used resources of the Facility for Advanced Accelerator Experimental Tests II (FACET-II), which is a DOE Office of Science User Facility.

The Importance of Strong Focusing

- Matching into plasma stages
 - Necessary to prevent chromatic emittance growth
 - Quadrupole magnets not strong enough
- Divergence control coming out of plasma stages
 - Prevent chromatic emittance growth in vacuum from high divergence
 - Match injected beams exiting plasma to magnets / undulators
- Collider final focus
 - Axisymmetric can reduce length
 - Ultra compact and strong can provide tightest focus
 - Serve as proxy for collider FF in strong focusing studies (Oide effect)
- Other
 - SFQED increase chi: nonlinear quantum param.
 - ICS increase brightness by reducing source size
 - HEDP increase energy density on target

Thin, Underdense, Passive Plasma Lens (TUPPL)

- Thin PWFA much shorter than one betatron period
- Underdense Nonlinear blowout regime
- Passive No reliance on externally driven current
- Plasma Lens Transverse focusing impulse with negligible energy change

University of Colorado Boulder

Attractive Features of TUPPL

• Extremely strong focusing

• Orders of magnitude beyond electromagnets and PMQs

Axisymmetric focusing

• Single lens can achieve symmetric focus in x & y

Ultra-compact

- Plasma lens itself: ~100 μm
- Gas jet & laser hardware: ~1 cm footprint along beam line

• Rapidly and easily tunable

- Strength scales with density \rightarrow gas pressure
- Strength scales with length \rightarrow laser energy / focus

• Self-aligning

• Central axis of blowout determined by electron beam

TUPPL focusing strength is orders of magnitude stronger than magnets of equivalent phase advance (normalized length).

Quadruple Magnet

Adapted from Taylor, SLAC-PUB-5621 (1991)

Phase advance (normalized length): $\Delta \psi = \sqrt{KL} = 0.1$

Туре	K [m ⁻²]	L [mm]	f [cm]
Quadrupole Electro- magnet	0.3	180	1000
Permanent Magnetic Quadrupole	150	8.2	81
Underdense Plasma Lens at n _p =10 ¹⁷ cm ⁻³	88400	0.34	3.3

Not only are plasma lenses <u>stronger</u>, but they are <u>axisymmetric</u>, unlike quadrupole magnets.

FACET-II: Nominal Experimental Design

FACET-II: E-308 Experimental Setup

- Vacuum chamber with moveable gas jet
- 2 mm round nozzle, 2 mm below e-beam
- Gas ionized by laser
- Laser focused by axilens along e-beam direction
- Limitations:
 - Not well characterized at low pressure
 - Axial focusing means jet defines plasma profile

FACET-II Electron Imaging Spectrometer

University of Colorado Boulder

- Quadrupole magnet triplet and spectrometer dipole magnet
- Disperses in y, images in x
- Image plane at OTR screen near dump
- Object plane scanned around location of gas jet (plasma lens)

Focusing with the Plasma Lens

Plasma Lens Off

Imaging Spectrometer Screen Object Plane: Plasma Lens Total Charge: 1.6 nC Centroid Energy: 10 GeV

Plasma Lens On

Imaging Spectrometer Screen

Object Plane: Plasma Lens Focused Charge: 70 pC Energy Loss: ~200 MeV **Imaging Spectrometer Screen**

Object Plane: Plasma Lens Focused Charge: 300 pC Energy Loss: ~250 MeV

AAC 2024 - Naperville, IL - July 22, 2024

Focusing with the Plasma Lens

Plasma Lens Off

Imaging Spectrometer Screen Object Plane: Plasma Lens Total Charge: 1.6 nC Centroid Energy: 10 GeV

Imaging Spectrometer Screen

Object Plane: Plasma Lens Focused Charge: 70 pC Energy Loss: ~200 MeV

Imaging Spectrometer Screen

Object Plane: Plasma Lens Focused Charge: 300 pC Energy Loss: ~250 MeV

Plasma Lens On

Imaging Spectrometer Object Plane Scan

Imaging Spectrometer Object Plane Scan

Thin Lens Focusing

Focal length depends on beam energy and plasma lens density & length:

$$f \equiv \frac{1}{KL} = \frac{1}{2\pi r_e} \frac{\gamma_b}{n_p L} \xrightarrow{\bullet \text{ Beam Energy}} \text{Plasma Density}$$

Can easily determine waist location and waist CS parameters as a function of initial CS parameters:

$$\beta_{f}^{*} = \frac{1}{K^{2}L^{2}\beta_{0} + 2KL\alpha_{0} + \gamma_{0}}$$

$$z_{w}^{*} = \frac{KL\beta_{0} + \alpha_{0} - L\gamma_{0}}{K^{2}L^{2}\beta_{0} + 2KL\alpha_{0} + \gamma_{0}}$$
Doss et.al., Phys. Rev. Accel. Beams, **22**(11)111001 (2019)

University of Colorado Boulder

Estimating Plasma Lens Conditions

$$z_w^* = \frac{KL\beta_0 + \alpha_0 - L\gamma_0}{K^2L^2\beta_0 + 2KL\alpha_0 + \gamma_0}$$

Pressure	Length	β _o	α ₀	Yo	z _w *	n _p	Δφ
3 PSI	2 mm	93 cm	1.2	0.026 cm ⁻¹	6.8 cm	7.6x10 ¹⁵ cm ⁻³	0.16 rad
7.5 PSI	2 mm	93 cm	1.2	0.026 cm ⁻¹	~2 cm	2.8x10 ¹⁶ cm ⁻³	0.31 rad

- Assuming L = 2 mm, and Twiss params from vacuum beam we can solve for plasma density using z^{*}
- Distance to focus z^* better than β^* because it is less sensitive to chromaticity
- 7.5 PSI plasma density a few times larger than 3 PSI, as expected (though not exact ratio)

We find plasma lens to be in the thin, underdense regime for both pressures.

June 2024 Experimental Summary

First evidence of thin, underdense, passive plasma lens behavior!

- 70 pC and 300 pC strongly focused in 2mm plasma lens of density O(10¹⁶ cm⁻³)
- Focal point shifted more than 40 cm upstream while still in vacuum after plasma lens
- Apparent β^* of 7cm and 16cm reduced from 39 cm
- Scaling of focal strength with gas pressure roughly follows model

Non-ideal setup:

- Axial ionization \rightarrow long plasma \rightarrow very low pressure \rightarrow difficult to characterize directly
- Electron beam very large (~100 μm emittance, 80 μm spot size at plasma lens)
- Only a portion of the beam interacted strongly:
 - Likely only rear of bunch inside blowout wake
 - Lost few percent energy
 - Weakly interacting portion behaved similarly to vacuum beam

Future Outlook

• Simulation studies:

• Perform PIC simulations to enhance understanding of experimental results

• Improve setup:

- Transverse propagation of ionization laser
 - Plasma length controlled by laser focus: short and tunable
 - Shorter length allows higher backing pressure \rightarrow better characterized gas & plasma
- Higher quality incoming e-beam
 - Increase amount of interacting charge
 - Allow operation at higher plasma density

Broader parameter scans:

- Vary density with gas jet pressure
- Vary length with laser properties
- Vary incoming beam parameters by shifting vacuum waist

Thank You!

