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Motivation
• Plasma wakefields using asymmetric beams (𝜎! > 𝜎") with highly asymmetric 

emittances (𝜖! ≫ 𝜖") have not been investigated.
• These beams yield a blowout cavity that is elliptical in cross section which 

leads to interesting physics.

• Promising to use asymmetric drivers in hollow channel plasmas to accelerate 
positrons (Zhou et al, 2021)

• For colliders, beams with highly asymmetric emittance are expected to 
mitigate beam-beam effects (beamstrahlung) at the interaction point. 

    Important to check how these beams will behave in plasma afterburner 
scenarios 
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• We can start with a beam having an arbitrary 
profile:

• Using the linearized wake equation (𝜉 = 𝑐𝑡	 − 𝑧), 
we can get the perturbed plasma density :

• For a Gaussian beam, this gives

• The linear  regime can be accessed at the AWA 
with higher plasma densities
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First simulations (𝑛! ≪ 𝑛")



First simulations (𝑛! ≫ 𝑛")
• For high beam densities (1!1"

≫ 1), 
there is a formation of an 
axisymmetric blowout cavity

• Example of a strong blowout                  
(𝜎! = 10	𝜎",	𝑛2 = 100)



First simulations (𝑛! > 𝑛")
• For high beam densities (1 < 𝑛2 < 20	) 

there is a formation of an elliptical 
blowout cavity

• The ellipticity reduces with increase in 
beam density.

• Example of a weak blowout (𝜎! =
10	𝜎")
• Can be accessed at AWA 

• The ellipticity (𝑎3/𝑏3) needs to be 
properly taken into account
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𝜓 = 𝜙4 + 𝜙5,7859:8 − 𝐴;,7859:8

• The quasi-potential (𝜓=𝜙−𝐴z) gives the complete 
description of fields on a relativistic beam

• We set 𝜓 = 0 at	the	boundary. Our argument is 
that there are no electromagnetic fields outside. 

• We have a poisson’s equation with boundary 
condition:
• 𝛻<𝜓 = −1; 	 𝜓|=> = 0

• Solution: 𝜓 = − 4!5"!67!8"!98"!5"!	
;(8"!65"!)
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• We can test this model by fitting for the 
elliptical sheath boundaries generated 
using PIC simulations

• This can be used to find the wakefields:
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Finding the blowout boundaries
• In the long beam limit (𝑟 ≪ 𝛾𝜎;), we neglect the 

longitudinal variation of the fields

• By neglecting the plasma return velocity (vz = 0) 
and equating the forces at the boundaries, we 
get:
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• We can add back the electromagnetic 
character to the wake by adding back the 
longitudinal velocity:
• 𝑣; =

J%
K(!!AL)("!AL)

𝑛6 = 10, Center	slice	(XY)

𝑛6 = 20, Center	slice	(XY)



Finding the matched beam parameters
• Input: Beam charge, Beam bunch length (𝜎;), emittance (𝜖1!,𝜖1")
• Output: Blowout size (𝑎3, 𝑏3), Matched beam size (𝜎!, 𝜎")

𝑊7(𝑎4, 𝑏4) + 𝐸6(𝑛6 , 𝜎+ , 𝜎* , 𝑎4, 𝑏4) = 0 Substitute:

𝜎7 =
1
𝐾7

𝜖7

𝐾+ =
2𝐾%

1 + 𝑎4./𝑏4.
𝐾* =

2𝐾%𝑎4./𝑏4.

1 + 𝑎4./𝑏4.

𝐾% =
1
2𝛾

f(𝜖#, 𝜖$, 𝑎%, 𝑏%) = 𝑊&(𝑎%, 𝑏%) + 𝐸'(𝑛'(𝐼', . . . ), 𝜎#(𝜖#, 𝑎%, 𝑏%), 𝜎$(𝜖$, 𝑎%, 𝑏%), 𝑎%, 𝑏%)

Minimize the function to 
obtain the blowout size and 
matched spot size

(𝑎%, 𝑏%, 𝜎#, 𝜎$)

Plug back to verify

𝐼6 = 2𝜋𝜎+𝜎*𝑛6



PWFA Experiment at the AWA facility



Flat beam PWFA experiment (AWA)
• Asymmetric emittances can be used to 

yield elliptical blowouts
• 1 nC, 200: 2 um ratio at  42 MeV have been 

created

• Aim would be to increase energy to 58 
MeV and charge to 2-3 nC

• Weak nonlinear regime can be accessed
• Plasma source with 10La − 10Lb	𝑐𝑚Cc 

(developed at UCLA)

• First runs performed at 45 MeV, 1 nC
AWA facility

Flat beam parameters at AWA



First runs - Magnetized beam (ℒ)
• Beam parameters – 1 nC, 45 MeV
• Canonical angular momentum

• 𝐿 = 𝛾𝑚𝑟<�̇� + L
< 𝑒𝐵;𝑟

<

• Inside solenoid at photocathode
• �̇� = 0, < 𝐿 >	= 𝑒𝐵d𝜎e<

• This is converted to mechanical angular 
momentum 
• < 𝐿 >	= 3&f'f"741g

h

• Magnetization
• ℒ = +,-

(.(/

• The effective emittance is:  𝜀5ii ≡ 𝜀j< + ℒ< ≃ ℒ
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CAM dominated beam

Uncorrelated emittance

Y. Sun et al, 
PRSTAB (2004)



First runs - Round-to-Flat beam transformation
• The	round	to	flat	beam	transformation	is	done	using	a	set	of	three	
skew	quadrupoles	to	remove	the	angular	momentum	of	the	beam
• This	splits	the	emittance
• 𝜀! →	𝜀A = 𝜀5ii + ℒ ≃ 2ℒ

• 𝜀" → 𝜀C = 𝜀5ii − ℒ ≃
k())
"

<ℒ

SQ1 SQ2 SQ3

Skew quadrupoles

T. Xu et al,
PRAB 2022

𝜖', 𝜖0 →	200:2 um rad

YAG YAG



First runs - Quad scan measurement

Preliminary	analysis
𝜖!, 𝜖" → 335.25, 5	𝑢𝑚	𝑟𝑎𝑑



Beam – plasma interaction
• We can use our long beam model for the 

vacuum-plasma transport
• The ellipticity increases with increase in 

plasma density (𝛼D ∝ 𝑛D)
• The ellipticity is about 1.4 for a 3 nC and 

2 for a 2 nC beam 

Analytical results



• Input twiss parameters (20.3 m) from 
OPAL

• We focus the beam at two different 
locations
• Ante chamber
• Plasma chamber

• 𝛽*(needed): 0.009 m , 𝛽+(needed): 0.0071 m

• Emittance changes due to chromatic 
spread (3rd order tracking)
• 𝜖* =	188 .7 -> 189.5 (I.P) um rad
• 𝜖+ =1.6 -> 2.8 (I.P )um rad

27.21 m20.3 m

Elegant simulations (58 MeV)



Capillary discharge plasma source at UCLA

Solid state 
Switch
 

Capacitor
 

Capillary

Photodiode
 

Camera
 

Beam 
splitter
 

• 4 mm diameter x 8 cm length

• 1 cm holder on either side 

• 10 kV, 60 A peak current, Argon 
gas, 50 psi, 5 ms window



Plasma source diagnostics - 
Interferometer

• Change in phase can be estimated from the signal 
at the photodiode

• Plasma density can be estimated from this change 
in phase

• Changing the delay between the gas injection and 
the electrical discharge changes the peak density
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1
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5 shots per delay



Observables - PWFA
• Energy spread and plasma focusing 

visible on spectrometer and YAG
• Diagnostics for mismatch would be 

difficult

𝑝E-𝑧	

X-Y

Spot size
 evolution
(QuickPIC)



Axisymmetric case (𝜖',0 ∶ 20	𝑢𝑚	𝑟𝑎𝑑)

• Transverse dependence of the longitudinal field
• Curvature is observed 
• This might be sign of elliptical blowout

• No transverse dependence 
• No curvature is observed 

Asymmetric case (𝜖! ∶ 200, 𝜖" ∶ 2	𝑢𝑚	𝑟𝑎𝑑)

Observables – Elliptical blowout

𝑝E-𝑥	 𝑝E-𝑦	 𝑝E-(𝑥, 𝑦)



Asymmetric passive lens (FACET-II)
• Ellipticity of the blowout will yield 

an asymmetric focusing kick on 
the witness

• Can be produced by creating a 
high aspect ratio drive beam using 
quadrupoles

• Proof of principle experiment to 
show ellipticity of blowout 



Conclusion and next steps
• We have shown the asymmetric wakefields that are driven by flat 

beams 
• Beams with highly asymmetric emittance in the ratio 1:100 are 

possible at AWA 

• The key next steps are:
• Plasma source characterization and automation at UCLA

• Finalizing the differential pumping setup and beamline design
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Thank you for your time!
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• We have a poisson’s equation with boundary condition:
• 𝛻(𝜓 = −1; 	 𝜓|23 = 0; 𝑎 = 𝑥"( − 𝑦"(

• We can use the particular solution to the PDE (Ignoring BCs)
• 𝜓" = − 4!

5
(cosh 2𝜇 − cosh 2𝜇$ + cos(2𝜈))

• We add a homogenous solution such that potential is 0 at 𝜇=𝜇d
•  𝜓6 =

4!

5
789: (;
789: (;)

cos(2𝜈))

• Using elliptical coordinates:
• 𝜓 = 𝜓" + 𝜓6 =	−

4!

5
(cosh 2𝜇 − cosh 2𝜇$ + 1 − 789: (;

789: (;)
cos(2𝜈))

• Converting back to Cartesian coordinates:
• 𝜓 = − '!0*!<0!'*!&'*!0*!	

(('*!<0*!)

Elliptical wake potential



• Location of waist:
• 𝑧o!	 =

p,qr-,As-,Cqt-,
p,"q"r-,A<p,qs-,At-,

• 𝑧o"	 =
p.qr-.As-.Cqt-.

p."q"r-.A<p.qs-.At-.
• We can solve for 𝑧o! = 𝑧o" 

Application – Asymmetric Plasma Lens

Solution for 𝑧o!= 𝑧o" and 𝛽d! = 𝛽d"Solution for	𝑧o!= 𝑧o" and 𝛽d! ≠ 𝛽d"


