Flat beam plasma wakefield experiment at the AWA facility

Pratik Manwani¹, Alex Ody³, Nathan Majernik², Derek Chow¹ Yunbo Kang¹, Joshua Mann¹, Gerard Andonian ^{1,4}, Seongyeol Kim³, Phillipe Piot³, John Power³, Doran Scott³, and James Rosenzweig¹

1: University of California, Los Angeles

2. Stanford Linear Accelerator Center (SLAC)

3: ANL, Lemont, Illinois

4: Radiabeam

Outline

- Motivation
- General formalism
 - Beam and plasma blowout ellipticity
 - Matching conditions
 - Simulations Beam plasma interaction
- Experiment at Argonne Wakefield Accelerator(AWA)
 - Plasma source development
 - Beamline design
- Conclusion and future work

Motivation

- Plasma wakefields using asymmetric beams ($\sigma_x > \sigma_y$) with highly asymmetric emittances ($\epsilon_x \gg \epsilon_y$) have not been investigated.
 - These beams yield a blowout cavity that is elliptical in cross section which leads to interesting physics.
- Promising to use asymmetric drivers in hollow channel plasmas to accelerate positrons (Zhou et al, 2021)
- For colliders, beams with highly asymmetric emittance are expected to mitigate beam-beam effects (beamstrahlung) at the interaction point.

Important to check how these $\frac{U_{flat}}{U} \propto \frac{\sigma_y}{\sigma_x}$ scenarios

First simulations ($n_b \ll n_0$)

• We can start with a beam having an arbitrary profile:

 $n_b = n_{b0} X(x) Y(y) Z(z)$

• Using the linearized wake equation ($\xi = ct - z$), we can get the perturbed plasma density :

$$\left(\frac{\partial^2}{\partial\xi^2} + k_p^2\right)n_1 = -k_p^2 n_b$$

• For a Gaussian beam, this gives

$$n_1(r,\xi) = -k_p n_{b0} e^{(-\frac{x^2}{2\sigma_x^2})} e^{(-\frac{y^2}{2\sigma_y^2})} \int_{\epsilon}^{\infty} e^{(-\frac{z^2}{2\sigma_z^2})} \sin\left(k_p(\xi - \xi')\right) d\xi$$

• The linear regime can be accessed at the AWA with higher plasma densities

First simulations ($n_b \gg n_0$)

- For high beam densities $(\frac{n_b}{n_0} \gg 1)$, there is a formation of an axisymmetric blowout cavity
- Example of a strong blowout ($\sigma_x = 10 \sigma_y$, $n_b = 100$)

First simulations ($n_b > n_0$)

- For high beam densities $(1 < n_b < 20)$ there is a formation of an elliptical blowout cavity
- The ellipticity reduces with increase in beam density.
- Example of a weak blowout ($\sigma_{\chi} = 10 \sigma_{\chi}$)
 - Can be accessed at AWA
- The ellipticity (a_p/b_p) needs to be properly taken into account

Quasi-potential ($\psi = \phi - A_z$)

• The quasi-potential $(\psi=\phi-A_z)$ gives the complete description of fields on a relativistic beam

- We set $\psi = 0$ at the boundary. Our argument is that there are no electromagnetic fields outside.
- We have a poisson's equation with boundary condition:

•
$$\nabla^2 \psi = -1; \ \psi|_{\partial\Omega} = 0$$

• Solution:
$$\psi = -\frac{x^2b_p^2 + y^2a_p^2 - a_p^2b_p^2}{2(a_p^2 + b_p^2)}$$

Wakefields

- We can test this model by fitting for the elliptical sheath boundaries generated using PIC simulations
- This can be used to find the wakefields:

•
$$F_x = E_x - B_y = -\frac{\partial \psi}{\partial x} = \frac{xa_p^2(\xi)}{a_p^2(\xi) + b_p^2(\xi)}$$

• $F_y = E_y + B_x - \frac{\partial \psi}{\partial y} = \frac{ya_p^2(\xi)}{a_p^2(\xi) + b_p^2(\xi)}$
• $F_z = E_z = -\frac{\partial \psi}{\partial \xi} = \frac{a_p b_p ((x^2 - y^2 + b_p^2)b_p a'_p + (x^2 - y^2 - a_p^2)a_p b'_p))}{(a_p^2 + b_p^2)^2}$

Finding the blowout boundaries

- In the long beam limit ($r \ll \gamma \sigma_z$), we neglect the longitudinal variation of the fields
- By neglecting the plasma return velocity (v_z = 0) and equating the forces at the boundaries, we get:

•
$$\frac{\partial \psi(x, 0, \xi_0)}{\partial x} = \frac{\partial \phi_b(x, 0, \xi_0)}{\partial x}$$

• We can add back the electromagnetic character to the wake by adding back the longitudinal velocity:

•
$$v_z = \frac{\lambda_b}{\pi (x_p+1)(y_p+1)}$$

Analysis of the blowout plasma wakefields produced by drive beams with elliptical symmetry

P. Manwani,* Y. Kang, J. Mann, B. Naranjo, G. Andonian, and J. B. Rosenzweig Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA (Dated: July 22, 2024)

Finding the matched beam parameters

- Input: Beam charge, Beam bunch length (σ_z), emittance ($\epsilon_{nx}, \epsilon_{ny}$)
- Output: Blowout size (a_p, b_p) , Matched beam size (σ_x, σ_y)

$$W_{\perp}(a_{p}, b_{p}) + E_{b}(n_{b}, \sigma_{x}, \sigma_{y}, a_{p}, b_{p}) = 0 \longrightarrow \text{Substitute:} K_{x} = \frac{2K_{r}}{1 + a_{p}^{2}/b_{p}^{2}} K_{y} = \frac{2K_{r}a_{p}^{2}/b_{p}^{2}}{1 + a_{p}^{2}/b_{p}^{2}}$$

$$I_{b} = 2\pi\sigma_{x}\sigma_{y}n_{b} \quad K_{r} = \frac{1}{2\gamma} \quad \sigma_{\perp} = \sqrt{\frac{1}{\sqrt{K_{\perp}}}\epsilon_{\perp}}$$
Plug back to verify
$$Minimize \text{ the function to} \\ obtain \text{ the blowout size and} \\ matched \text{ spot size}}$$

$$(a_{p}, b_{p}, \sigma_{x}, \sigma_{y}) \quad \longleftarrow \quad f(\epsilon_{x}, \epsilon_{y}, a_{p}, b_{p}) = W_{\perp}(a_{p}, b_{p}) + E_{b}(n_{b}(I_{b}, \ldots), \sigma_{x}(\epsilon_{x}, a_{p}, b_{p}), \sigma_{y}(\epsilon_{y}, a_{p}, b_{p}), a_{p}, b_{p})$$

PWFA Experiment at the AWA facility

Flat beam PWFA experiment (AWA)

- Asymmetric emittances can be used to yield elliptical blowouts
 - 1 nC, 200: 2 um ratio at 42 MeV have been created
- Aim would be to increase energy to 58 MeV and charge to 2-3 nC
- Weak nonlinear regime can be accessed
 - Plasma source with $10^{14} 10^{15} cm^{-3}$ (developed at UCLA)
- First runs performed at 45 MeV, 1 nC

TABLE I. Beam parameters measured at slab location.

Parameter	Value	Unit
Charge	2 ± 0.3	nC
Energy	42 ± 0.2	${\rm MeV}$
Horizontal emittance (ε_x)	$196 \pm XX$	μm
Vertical emittance (ε_y)	$2.5\pm XX$	μm
rms bunch length σ_z	610 ± 70	μm

Flat beam parameters at AWA

AWA facility

First runs - Magnetized beam (\mathcal{L})

- Beam parameters 1 nC, 45 MeV
- Canonical angular momentum
 - $L = \gamma m r^2 \dot{\phi} + \frac{1}{2} e B_z r^2$
- Inside solenoid at photocathode
 - $\dot{\phi} = 0$, $< L > = eB_0\sigma_c^2$
- This is converted to mechanical angular momentum

• < L > =
$$\frac{p_z r_1 r_2 sin\theta}{D}$$

Magnetization

$$\mathcal{L} = \frac{\langle L \rangle}{2m_e c}$$

• The effective emittance is: $\varepsilon_{eff} \equiv \sqrt{\varepsilon_u^2 + \mathcal{L}^2} \simeq \mathcal{L}$

Uncorrelated emittance

0.12

0.14

0.16

0.10

0.00

0.02

0.04

0.06

0.08

Magnetic Field (T)

CAM dominated beam

First runs - Round-to-Flat beam transformation

• The round to flat beam transformation is done using a set of three skew quadrupoles to remove the angular momentum of the beam

First runs - Quad scan measurement

Beam – plasma interaction

- We can use our long beam model for the vacuum-plasma transport
- The ellipticity increases with increase in plasma density ($\alpha_p \propto n_p$)
- The ellipticity is about 1.4 for a 3 nC and 2 for a 2 nC beam

Capillary discharge plasma source at UCLA

- 4 mm diameter x 8 cm length
- 1 cm holder on either side
- 10 kV, 60 A peak current, Argon gas, 50 psi, 5 ms window

Plasma source diagnostics -Interferometer

 Change in phase can be estimated from the signal at the photodiode

$$V_{p} = \frac{1}{2}(V_{max} - V_{min})(1 + \cos\phi) + V_{min}$$

• Plasma density can be estimated from this change in phase

$$2\int_{0}^{d} N_{e}(z)dz = \frac{4\pi c^{2}m_{e}\epsilon_{0}}{\lambda e^{2}}\Delta\phi$$

• Changing the delay between the gas injection and the electrical discharge changes the peak density

Observables - PWFA

- Energy spread and plasma focusing visible on spectrometer and YAG
- Diagnostics for mismatch would be

Observables – Elliptical blowout

- Transverse dependence of the longitudinal field
- Curvature is observed
- This might be sign of elliptical blowout

- No transverse dependence
- No curvature is observed

Asymmetric passive lens (FACET-II)

- Ellipticity of the blowout will yield an asymmetric focusing kick on the witness
- Can be produced by creating a high aspect ratio drive beam using quadrupoles

• Proof of principle experiment to show ellipticity of blowout

Conclusion and next steps

- We have shown the asymmetric wakefields that are driven by flat beams
- Beams with highly asymmetric emittance in the ratio 1:100 are possible at AWA
- The key next steps are:
 - Plasma source characterization and automation at UCLA
 - Finalizing the differential pumping setup and beamline design

References and Acknowledgements

- Manwani, P., Kang, Y., Mann, J., Naranjo, B., Andonian, G., & Rosenzweig, J. B. (2024, June 4). *Analysis of the blowout plasma Wakefields produced by drive beams with elliptical symmetry*. arXiv.org. https://arxiv.org/abs/2406.02719
- W.Kellog, Foundations of Potential Theory, (Dover Publications, New York, 1953), p. 192
- Xu, T., Conde, M., Ha, G., Kuriki, M., Piot, P., Power, J., & Wisniewski, E. (2019). Generation High-Charge of Flat Beams at the Argonne Wakefield Accelerator. In 10th International Particle Accelerator Conference. 10.18429/JACoW-IPAC2019-WEPTS094
- W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, Nonlinear theory for relativistic plasma wakefields in the blowout regime, Phys. Rev. Lett. 96, 165002 (2006).
- Barov, N., Rosenzweig, J., Conde, M., Gai, W., & Power, J. (2000).
 Observation of plasma wakefield acceleration in the underdense regime.
 Phys. Rev. ST Accel. Beams, 3, 011301. https://link.aps.org/doi/10.1103/PhysRevSTAB.3.011301
- Mihalcea, Daniel & Piot, P. & Stoltz, P. (2012). Three-Dimensional Analysis of Wakefields Generated by Flat Electron Beams in Planar Dielectric-Loaded Structures. Physical Review Special Topics - Accelerators and Beams. 15. <u>https://doi.org/10.1103/PhysRevSTAB.15.081304</u>
- Yakimenko, V., Alsberg, L., Bong, E., Bouchard, G., Clarke, C., Emma, C., Green, S., Hast, C., Hogan, M., Seabury, J., Lipkowitz, N., O'Shea, B., Storey, D., White, G., & Yocky, G. (2019). FACET-II facility for advanced accelerator experimental tests. *Phys. Rev. Accel. Beams*, *22*, 101301. <u>10.1103/PhysRevAccelBeams.22.101301</u>

SCARF Scientific Computing Application Resource for Facilities

National Energy Research Scientific Computing Center

Funded by DOE Grant No. DE-SC0017648

Thank you for your time!

Backup Slides

Elliptical wake potential

• We have a poisson's equation with boundary condition:

•
$$\nabla^2 \psi = -1; \ \psi|_{\partial\Omega} = 0; a = \sqrt{x_p^2 - y_p^2}$$

• We can use the particular solution to the PDE (Ignoring BCs)

•
$$\psi_p = -\frac{a^2}{8}(\cosh(2\mu) - \cosh(2\mu_0) + \cos(2\nu))$$

- We add a homogenous solution such that potential is 0 at $\mu = \mu_0$ • $\psi_h = \frac{a^2}{8} \left(\frac{\cosh(2\mu)}{\cosh(2\mu_0)} \right) \cos(2\nu)$
- Using elliptical coordinates:

$$\psi = \psi_p + \psi_h = -\frac{a^2}{8} \left(\cosh(2\mu) - \cosh(2\mu_0) + \left(1 - \frac{\cosh(2\mu)}{\cosh(2\mu_0)} \right) \cos(2\nu) \right)$$

v=0 $v=2\pi$

V=11,76

u = 3/2

u=2

 $v=3\pi/2$

• Converting back to Cartesian coordinates:

•
$$\psi = -\frac{x^2 y_p^2 + y^2 x_p^2 - x_p^2 y_p^2}{2(x_p^2 + y_p^2)}$$

Application – Asymmetric Plasma Lens

 Location of waist: 0.12 • $z_{wx} = \frac{K_x L \beta_{0x} + \alpha_{0x} - L \gamma_{0x}}{K_x^2 L^2 \beta_{0x} + 2K_x L \alpha_{0x} + \gamma_{0x}}$ 0.10 0.08 • $z_{wy} = \frac{K_y L \beta_{0y} + \alpha_{0y} - L \gamma_{0y}}{K_y^2 L^2 \beta_{0y} + 2K_y L \alpha_{0y} + \gamma_{0y}}$ 0.06 0.04 0.02 • We can solve for $z_{wx} = z_{wy}$ 0.05 0.10 0.15 0.20 Solution for $z_{wx} = z_{wy}$ and $\beta_{0x} = \beta_{0y}$ Solution for $z_{wx} = z_{wy}$ and $\beta_{0x} \neq \beta_{0y}$ --- σ_x (Assuming axisymmetric plasma lens) --- σ_v (Assuming axisymmetric plasma lens) $-\sigma_x$ (Asymmetric Plasma lens ((ellipticity=2))) 6 — σ_v (Asymmetric Plasma lens ((ellipticity=2))) 5 4 (шп)ο σ(um) 3 3 2 2 σ_x (Assuming axisymmetric plasma lens σ_{v} (Assuming axisymmetric plasma lens 1 σ_x (Asymmetric Plasma lens ((ellipticity=2))) σ_v (Asymmetric Plasma lens ((ellipticity=2))) 0.00 0.02 0.08 0.04 0.06 0.10 0.00 0.02 0.04 0.06 0.08 0.10 z (m) z (m)