

Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guiding

AAC

July 22, 2024

Valentina Lee, Robert Ariniello, Doug Storey, Severin Diederichs

Claudio Emma, Eric Esarey, Spencer Gessner, Mark Hogan, Alex Knetsch, Nathan Majernik, Brendan O'Shea, Jens Osterhoff, Carl Schroeder, Maxence Thevenet, Carlo Benedetti, **Michael Litos**

Outline

• Positron Acceleration in a PWFA

- Challenges
- Proposed scheme narrow plasma column
- Narrow Plasma PWFA
 - Transverse field beam guiding
 - Longitudinal field reduced strength
- Experiment
 - FACET-II
 - E333 experiment set up and execution
- Experimental Evidence
 - Beam guiding
 - Reduction in energy loss

We present the concept of the narrow column PWFA and initial results of electron beam guiding.

Positron Acceleration in a PWFA — Challenges

University of Colorado Boulder

Transverse focusing is a major challenge that must be solved to realize positron PWFA.

Narrow Plasma Column PWFA

Sheath electrons return to different longitudinal positions depending on their initial transverse position.

S. Diederichs, C. Benedetti, E. Esarey, J. Osterhoff, and C. B. Schroeder, "High-quality positron acceleration in beam-driven plasma accelerators," *Physical Review Accelerators and Beams*, vol. 23, no. 12, 2020.

Valentina Lee – Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guiding – AAC, July 24, 2023

Positron Acceleration — Narrow Plasma Column

University of Colorado Boulder

Valentina Lee – Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guiding – AAC, July 24, 2023

Longitudinal Fields

The reduction in energy loss in narrow column PWFA is a signature of being in the narrow column regime.

Misalignment to a Plasma Column

7

Misalignment: The beam's position or angle is offset/tilted relative to the column center.

Asymmetric Transverse Force

 $abs(E_x - cB_y)$ (GeV/m)

Asymmetric Sheath Electrons

The asymmetric sheath electrons in the narrow plasma column results in asymmetric transverse focusing force.

Asymmetric Transverse Force

The asymmetric transverse focusing force focuses the e-beam to the center of the column.

Asymmetric Wake -> Asymmetric Transverse Force -> Guiding to Channel

Electron Beam Guiding in a Narrow Plasma Column

Simulations on Electron Beam Guiding

- We simulate misaligned electron beams traversing through 70 cm plasma in HiPACE++.
- Narrow plasma column -> Guiding
- Wide plasma column -> No Guiding

Electron beam guiding is a unique experimental observable to identify the narrow plasma PWFA.

FACET-II at SLAC National Accelerator Laboratory **G** University of Colorado Boulder

Current Beam Parameters:

Charge	Energy	ε _{x, y}	σ_{ξ}	σ _r	σ_{δ}
1.6 nC	10 GeV	15, 15 μm-rad	35 μm	35 μm	1%

FACET-II is built to deliver high-energy, high-quality electron beams.

Valentina Lee – Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guidance – AAC, July 24, 2023

The E333 Experiment at FACET-II

Laser ionized plasma source offers the ability to shape the transverse and longitudinal density profile.

The E333 Experiment at FACET-II

Laser ionized plasma source offers the ability to shape the transverse and longitudinal density profile.

Tandem Lens

Valentina Lee – Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guidance – AAC, July 24, 2023

Laser-ionized Plasma Source – Wide Column

Valentina Lee – Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guidance – AAC, July 24, 2023

Laser-ionized Plasma Source – Narrow Column

Valentina Lee – Positron Acceleration in a Narrow Plasma Column: Concept and Initial Results of Electron Beam Guidance – AAC, July 24, 2023

Plasma to Electron Beam Alignment

1-meter plasma source is aligned to a 10 GeV, 1.6nC electron beam to within 10um.

Operations

- Tilt plasma column
- Scan transversely

Measurements

- Ionization laser's position at the plasma exit
- Electron beam's position at the plasma exit (scintillation-based electron spectrometer)

Guiding evidence: electron beam positions measured follow plasma positions at exit.

Data Elimination

Presenting shots that have comparable deacceleration with the aligned case (deacceleration charges reach 6GeV) -> the e-beam goes through the entire plasma column.

Data Presentation

Plot the ionization laser's position <u>at the plasma exit</u> and the **electron beam's position** <u>at the plasma exit</u>.

Plasma Width Control

Decreasing the ionization laser's energy narrows the plasma width.

A linear relationship with a slope of 1 means guiding.

Measurements at Various Tilt Angles

Electron beam guiding evidence appears in various plasma widths and at various tilt angles.

Experimental Evidence of Narrow Plasma Generated

E-beam Position Jitter Spread at Exit

The position jitter of the e-beam at the plasma exit reflects the width of the plasma column because the **plasma column entrance** serves as a aperture.

Electron beam position jitter at the plasma exit is a measure of the size of the plasma column.

Experimental Evidence of Reduction in Energy Loss

Reduced e-beam energy loss is observed as the ionization laser energy decreases.

- We describe the **positron PWFA technique** in a narrow plasma column.
- We simulate that the **transverse focusing force of the wake is asymmetric** when the driving electron beam offsets from the center.
- This asymmetric transverse force **guides the electron beam** along the plasma column trajectory.
- We report **preliminary experimental evidence** of the guided electron beam in a narrow column PWFA, plasma width measurement and a reduction in energy loss with respect to PWFA in a wide plasma column.

We demonstrate the production of a narrow column plasma experimentally and see the guiding effect. We advance the understanding of related experimental challenges.

Thank You for Your Attention

This work was funded by the U.S. DOE Office of Science award No. DE-SC0017906, DoE Contract No. DE-AC02- 19 76SF00515, and NSF Award Number PHY-1806053.