

Facility for Advanced Accelerator Experimental Tests

Advances in Two-Bunch Plasma Wakefield Acceleration at FACET-II

AAC24 Advanced Accelerator Workshop

Doug Storey | Associate Staff Scientist | FACET-I On behalf of the E300 Collaboration July 23, 2024

E300 collaboration

- PI's: C. Joshi (UCLA) and M. Hogan (SLAC)
- SLAC team:
 - R. Ariniello, C. Emma, S. Gessner, A. Knetsch, N. Majernik, B. O'Shea, S. Perez, I. Rajkovic, D. Storey,
 K. Swanson, R. Watt, M. Hogan
 - Z. Buschmann, S. Kalsi, R. Loney, M. Parker, G. Yocky
 - FACET-II is supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515
- Collaborators:

Two-Bunch PWFA: E300 goals at FACET-II

- To demonstrate energy doubling of a trailing bunch (from 10 to 20+ GeV) with:
 - <1% Energy Spread, and
 - Drive bunch pump depletion and > 40% drive to trailing bunch energy transfer efficiency,
 - while minimizing emittance growth
- Plasma and beam density with on-axis, E_z profile:

• Energy evolution of drive and trailing bunches:

Overview of the FACET-II National User Facility

- Hosts experiments in beam-driven PWFA and those that take advantage of intense electron and laser beams
- First experimental run in 2022 single bunch configuration
- First two-bunch commissioning in 2024
- Positron capabilities do not yet exist, but the plans do

Two bunch generation

Two bunch generation at the cathode

- 2 UV pulses aligned with 9ps separation
- Nominal configuration:
 - 1.2 nC drive $-10 \times 8 \mu m$ emittance
 - 0.4 nC witness 4 x 5 μm emittance
- Excellent agreement with simulation out of the injector

UV pulse stacking

Injector long. phase space

Laser heater

- Increases uncorrelated energy spread
- Effective tool for limiting microbunching, CSR, and ionization of buffer gas
 - See C. Emma's talk in WG5 on Thurs.

Injector schematic

July 23, 2024 Doug Storey | AAC24 | Two-bunch PWFA at FACET-II

Longitudinal diagnostics at the IP

X-band transverse deflected cavity

- Single-shot longitudinal phase space measurements
 - Nominal bunch separation of \sim 140 μ m
 - Drive bunch ~10.1 GeV, Witness ~9.9 GeV
- Upgrades to XTCAV RF are ongoing to improve resolution

- Non-destructive bunch separation
 measurement
- Extension to EOS-BPM under development
 - See C. Hansel's talk in WG5 (now!)

TCAV off

XTCAV

Energy

Drive

Witness

Positive crossing

Negative crossing

Two-bunch delivery to the IP

EOS measurements of bunch separation

- Drift of order 100 μm
- Jitter ~ 13 μm
- Strong correlation with energy at the second bunch compressor

Longitudinal feedback systems

- Feedbacks need to work on both bunch separation and compression
 - Few knobs, and even fewer diagnostics
 - Laser pulse separation, linac phases
- Much more work to be done!

FACET-II experimental area overview

Plasma sources – Lithium oven and hydrogen gas

- Main plasma source is the lithium oven hot lithium vapor contained by He buffer gas
 - Nominal 4×10^{16} cm⁻³ density over 40cm length
 - ~10 cm density ramps defined by lithium/helium boundary •

US Be

Second plasma source is static fill of 4 meters of hydrogen gas

Spectrometer diagnostics

- Broadband, large field of view electron spectrometers
- High resolution electron profile monitors
- X-ray/Gamma-ray screens for measuring betatron radiation

Dispersive quad scan measurements of two-bunch system

- Witness emittance ~50µm, energy spread ~1% FWHM
- Drive emittance < 50 μm

Drive to wake energy transfer with two bunches

- In previous single bunch runs we demonstrated ~40% energy transfer to the wake in the Li oven
 - See R. Ariniello's talk in WG3 (next!)
 - However the Li oven was damaged in these runs, leading to loss of Li
 - In the two-bunch studies we were working with an unknown plasma density profile

Drive only energy transfer

- Witness collimated at the end of linac
- Max energy loss of ~2.5 GeV
- >85% of charge participating
- Total energy transfer = $1.4 \pm 0.1 \text{ J}$ (~13%)

Relatively small energy loss, but high participating charge → oven in poor state

Witness acceleration

Acceleration of the witness by up to ~2 GeV

- Near complete capture of the witness at the optimal bunch spacing
 - Max witness capture at bunch separation ~ 138 um .
 - FWHM of distribution ~ 25 um .
 - 5 Torr Li oven $\rightarrow \lambda_p \sim 160$ um •

Bunch Separation [µm]

Vitness

0.3

0.1 120

125

130

11.4

11.2

10.8

12

165

155

160

Estimate of energy transfer efficiency

- 0.3 to 0.5 J energy transfer to witness
- Maximum 35% wake-to-witness energy transfer efficiency

Beam quality of the accelerated witness charge

Energy spread

- Order 1-2 GeV of acceleration at optimal bunch separation
- Energy spread of 1-4% of accelerated witness
 - Shot 496: 320 pC at 11 GeV, 3% energy spread
 - Shot 1355: <100 pC at >12 GeV, 1% energy spread

Single shot emittance measurements

- Minimum accelerated witness emittance of ~ 250 μ m
 - Beam not matched to plasma
 - Large fluctuations due to long. and transverse jitter
- Alignment of the two bunches into the plasma is critical!
 - See O. Finnerud's talk in WG3 on Mon.

Beam alignment into the plasma

- Sextupoles are included to correct chromatic aberrations
- Tuning of their transverse position was critical to minimize dispersion at the IP and drive/witness offsets
- It is very tricky to make direct measurements of beam profile at the IP
- Opportunity for ML/AI optimization based on PWFA performance

Two bunches in H₂ plasma – Drive-to-wake energy transfer

~3 meter long beam-ionized hydrogen plasma

- Static fill pressures up to 1.5 Torr
- Single bunch characterization:
 - C. Zhang, *et al.*, "Generation of meter-scale hydrogen plasmas..." PPCF (2024)
 - D. Storey, *et al.*, "Wakefield generation in hydrogen and lithium plasmas...", PRAB (2024)
- Laser heater used to optimize beam ionization

Drive to wake energy loss

- Maximum energy loss down to ~1.5 GeV in two bunch configuration
- Maximum energy transfer to the wake > ~30%

Two bunches in H₂ plasma – Witness acceleration

- Pressure adjusted to maximize witness capture and acceleration
 - Pressure ~0.6 Torr $\rightarrow \lambda_p \sim 230 \ \mu m$
 - Optimal bunch separation ~200 μm
- Bunch quality:
 - ~100 pC witness charge transported through the full plasma column
 - ~1 GeV acceleration with large energy spread
- Less stability and control with beam-ionized H₂ plasma

Future prospects

- Lithium oven is being replaced for 2024/25 run
- Improvements to longitudinal feedbacks, stability, and matching the machine to the linac model
- Improved sextupole characterization and tuning
- Developing improved tools for minimizing dispersion at the IP
- Improved reliability vacuum system, diagnostics, etc

Goals for the upcoming run:

- Demonstrate pump depletion and >60% drive-to-wake energy transfer in two-bunch configuration
- Stable two-bunch delivery to the IP
- Parameter scans to optimize witness acceleration and quality

Summary

- First demonstration of **both** two-bunch delivery and witness bunch acceleration at FACET-II
- Achieved 1-2 GeV witness acceleration
 - Limited by the degraded Lithium plasma source
- Near full capture of the witness bunch in the wake
- Few-% level energy spread of accelerated witness
- Relatively large emittance growth for now

