

National Laser-Initiated Transmutation Laboratory University of Szeged

A high repetition rate, stable source of neutrons generated by few-cycle lasers

National Laser-Initiated Transmutation Laboratory University of Szeged

Károly Osvay

AAC'24

Naperville, IL 25th July, 2024

E. Buzás, M. Füle, **T. Gilinger, Z. Jäger, M. Karnok, A.P. Kovács,** J. Razzaq, P. Varmazyar

> J. Csontos, K. Hideghéthy, A. Ebert, P.P. Geetha, A. Mohácsi, R. Molnar, R. Polanek, T. Somoskői, R.E. Szabó, Sz. Tóth

B. Biró, I. Csedreki, Z. Elekes, Z. Halasz, A. Fenyvesi, Zs. Fülöp, Z. Korkulu, I. Kuti, **L. Stuhl**

S. Figul, G. Marowski

Advanced Microfluidic Systems GmbH

NSTITUT POLYTECHNIQUE DE PARIS

INOLOGIES

G. Mourou

T. Tajima

Hungarian Government: ITM 1096/2019. (III.8.)
 National Research, Development and Innovation Office
 NKFIH-877-2/2020, NKFIH-476-4/2021, NKFIH-476-16/2021
 Multiscan 3D H2020 project: 101020100

Motivation Laser-based neutron sources Neutron generation at 10 Hz Neutron generation at 1kHz – PRELIMINARY! Application for ...

A room for laser-based neutron sources

Demand for neutron sources is rapidly increasing

- by academy, industry, and health care

National Laser-Initiated Transmutation Laboratory University of Szeged

Károly Osvay AAC 2024, Naperville, IL 25th Julv. 2024

A room for laser-based neutron sources

The number of neutron facilities sources is decreasing

- reactors are aging, and closing down.
- big sources are delayed.

Many emerging applications call for neutron sources with

- a yield of $10^8 \text{ n/s} 10^{11} \text{ n/s}$;
- relaxed safety and security (compared to reactors);
- compact, efficient;
- reliable.

Specialities of a laser-based neutron source

- neutrons are generated in ultrashort bunches;
- the "machine" (laser) and the "source" can be separated;
- the laser is not a nuclear device.

National Laser-Initiated Transmutation Laboratory University of Szeged

Laser-based neutron sources PW class lasers – current situation

PhotoFusion

- Accelerate ion (proton, deuterium)
- Make fusion: Be(p,n), Li(p,n), D(d,n) (T)d,n)

Highest efficiency experiment

69×10⁷ n/J 2×10⁶ n/s

Günther et al., Nat. Com.13, (2022) 170

Predicted efficiency

~8×10¹⁰ n/J

~1300×10⁶ n/s

~1% laser->neutron

Photonuclear

- Accelerate electrons
- Brehmstralung and high Z converter: (γ,n)

2.9×10⁷ n/J ~ 10⁵ n/s

Average power of such lasers is ~1W

Laser spallation

- Accelerate proton
- Make fusion: Be(p,n), Li(p,n), D(d,n) (T)d,n)

National Laser-Initiated Transmutation Laboratory University of Szeged

Martinez et al., MatRadExt 7 (2022) 024401

Strategies "en large" for a laser driven particle (neutron) source

NLTL approach

Use T(P)W lasers from single shot mode Contrast issues

Start from "ideal", "Dirac"-pulse Investigate interactions and optimise yields

Increase laser repetition rate Target development

High repetition rate target development Purpose designed laser Increase pulse energy

Both paths would lead to a laser accelerator based particle source... ... with differences especially in early stage

Laser-fusion (single shot events)

National Laser-Initiated Transmutation Laboratory University of Szeged

Tokamak ("continous" operation)

Common challange High Repetition Rate Targets

Most promising directions so far

Scheme of the interactions

Károly Osvay

25th Julv. 2024

AAC 2024, Naperville, IL

1 Hz (burst) mode, rotating wheel target Deuteron acceleration from foils and neutron generation

Osvay et al., EPJ Plus 139 (2024) 574

Single shot, few-cycle, single cycle pulses Study of ion acceleration on ultrathin foils

Singh et al., Sci. Rep. **12** (2022) 8100 Varmazyar et al., Rev.Sci.Instr. **93** (2022) 073301 Ter-Avetisyan et al., PPCF **65** (2023) 085012 Toth et al., Opt. Lett. **48** (2023) 57 Hadjikyriacou et al., in prep.

National Laser-Initiated Transmutation Laboratory University of Szeged

10 Hz continous mode ultrathin liquidleaf target systemDeuteron acceleration from liquid leafand neutron generation

Lecz, Varmazyar et al, in prep. Füle et al, *HPLSE* **12** (2024) e37 Osvay et al, in prep.

Ion Acceleration and Neutron Generation with Few-Cycle Lasers

Development of a sub-200nm liquid leaf target

- Two liquid jets collide from two glass nozzles
- Pulsation damping system for *stability*
- Recirculation system for *continous operation*
- Cold finger for 10⁻⁴ mbar *vacuum*
- Thicknesses measured *in vacuum* (!), and used here:
 ~230nm, ~440 nm

National Laser-Initiated Transmutation Laboratory University of Szeged

Ion acceleration at 10 Hz repetition rate from D₂O liquid target

National Laser-Initiated Transmutation Laboratory University of Szeged

LASER

Pulse energy: ~*23 mJ* (measured for each shot)

Laser pulse duration: *12.3 fs* Measured in vacuum, after OAP, with disp scan

Focal spot FWHM: 3.2×3.8 µm²

Peak intensity in focus: $4 \times 10^{18} \text{ W/cm}^2 (a_0 \sim 1)$

Temporal contrast

%EKSPLA

HUNGARIAN NATIONAL LABORATORY

Toth, et al., Photonics 2, 045003 (2020)

Károly Osvay AAC 2024, Naperville, IL 25th July, 2024

National Laser-Initiated Transmutation Laboratory University of Szeged

Deuterion acceleration at 10 Hz repetition rate

One of the four days - stability studies

cut-off morning: 1.06±0.12 (MeV)

cut-off afternoon: 0.95±0.087 (MeV)

DIAGNOSTICS – neutron

Three independent systems

Outside the chamber

Plastic scintillators: LILITH M, XL systems Liquid scintillator: PHRS system

Inside the chamber

Bubble Neutron Detector Spectrometer

Osvay et al., EPJ Plus 139 (2024) 574

Neutron measurements LILITH system, neutron spectra

HUNGARIAN NATIONAL

LABORATORY

N

Natio Trans University

Neutron measurements LILITH system, neutron events / 600 shots

HUNGARIAN NATIONAL LABORATORY

4 HILITH M #4 -3m Hombi EJ 300 -5.5m HILITH XL #2 -5.5m

LILÍTH XL #3

National Laser-Initiated Transmutation Laboratory University of Szeged

Neutron yield

LILITH, vs angle

Laser energy on the target: 23mJ Laser energy within FWHM focal spot: 8mJ

~1.5×10⁵ n/s

FWD Neutron spectrum

National Laser-Initiated Transmutation Laboratory University of Szeged

S3 laser (1 kHz, OPCPA) of ELI-ALPS parameters on target

Measured trace

GDD [fs²]

Retrieved spectrum and spectral phase in wavelength scale

900

Wavelength [nm]

1000

-50 0 50

800

0.8

[-€ 0.7 -

Pulse energy: $\sim 90 mJ$ (average measurement of

10k shot)

Laser pulse duration: 8.4 fs (measured in vacuum, after OAP, with disp scan)

Central wavelength: 826nm

Focal spot FWHM: $2.9 \times 2.6 \ \mu m^2$

Peak intensity in focus: $1 \times 10^{19} \text{ W/cm}^2$ (a₀~2.2)

Temporal contrast

National Laser-Initiated **Transmutation Laboratory** University of Szeged

Time [fs]

-40 -20 0 20

Autocorrelation Traces

*peak at +-22ps is estimated to be post-pulse from the variable density filter in the diagnostics arm. not in the main output

Károly Osvay AAC 2024, Naperville, IL 25th July, 2024

Deuterion acceleration at 1 kHz repetition rate 100 mJ (20mJ "FWHM") energy on target

Cut-off energy of deuterons

Károly Osvay AAC 2024, Naperville, IL 25th July, 2024

National Laser-Initiated Transmutation Laboratory University of Szeged

Bubble detector measurements of 1kHz neutron source

Neutrons measured with bubble detectors – AVERAGE numbers!

National Laser-Initiated Transmutation Laboratory University of Szeged

ToF measurements of a 1kHz neutron source ("Seven seconds of grace")

ToF measurement of the generated neutrons – average for 100 shots.

National Laser-Initiated Transmutation Laboratory University of Szeged

Neutron dosimeters of the laboratory upon the operation of our 1kHz neutron source

National Laser-Initiated Transmutation Laboratory University of Szeged

State of the art neutron generation at 10 Hz repetition rate (~6 hours)

cut-off for the day: 0.98±0.16 (MeV)

Deuteron acceleration from liquid

- at 10 Hz, SEA laser
- at 230mW (80mW) average power
- 200nm D_2O leaf + 0.1mm C_2D_4

Neutron generation

- 200nm D_2O leaf + 0.1mm C_2D_4
- fusion neutron spectra peaks ~3 MeV

~1.5×10⁵ n/s, rms 5%

Peak yield detected 2023/24 at 1kHz : ~10⁸ n/s - at 100W (?20W?) average power

National Laser-Initiated Transmutation Laboratory University of Szeged

Laser-based neutron sources for applications

National Laser-Initiated Transmutation Laboratory University of Szeged

FLASH – with neutrons First radiobiology experiment with laser-generated neutrons

Experimental chamber...

.... Zebrafish embryos in a vacuum tight container

Osvay et al., EPJ Plus 139 (2024) 574

National Laser-Initiated Transmutation Laboratory University of Szeged

First radiobiology experiment with laser-generated fast neutrons

Apoptotic cell density

 \mathbf{X}

Ń

HUNGARIAN NATIONAL LABORATORY

5th Joint ELI Call for Users

eli

ELI Facilities:

- ELI ALPS, Szeged, Hungary
- ELI Beamlines, Dolní Břežany, Czech Republic
- ELI NP, Magurele, Romania
- 5th Call period: 25 September 29 October 2024
- Unique scientific opportunities provided by access to a wide range of complementary instruments
- Single point of access (<u>https://up.eli-laser.eu</u>)
- Access is free based on a peer-reviewed evaluation of scientific excellence
- Contact Integrated ELI User Office user-office@eli-laser.eu

or technical contacts listed on User Portal.

The instrument run by NLTL of University of Szeged is "LEIA".

National Laser-Initiated Transmutation Laboratory University of Szeged

The Light Energy Ion Acceleration (LEIA) The First University beamline in ELI-ALPS

National Laser-Initiated Transmutation Laboratory University of Szeged

Thank you for your attention

