Efficient 6-dimensional phase space reconstructions from experimental measurements using generative machine learning

Ryan Roussel

rroussel@slac.stanford.edu

Modern Challenges in Beam Control

Modern accelerator developments require **precise control** over **high dimensional** beam structure

 $\boldsymbol{x} = (x, p_x, y, p_y, z, p_z)^T$

RMS quantities \rightarrow Exact beam structure

Macroscopic scale

Mesoscopic scale

Microscopic scale

Flat beams for colliders

Chen, P., and K. Yokoya. (1991): 91-2.

SLAC

C. A. Lindstrøm, et al. Phys. Rev. Lett. 126, 014801

Free electron lasers

Marinelli, A., et al. Nature communications 6.1 (2015): 6369.

Methods for 6D Beam Shaping

Argonne Wakefield Accelerator (AWA)

Transverse-to-longitudinal emittance exchange I(t)I(t. e- beam Transverse Deflecting Cavity (TDC) Dipole Mask

Temporal laser pulse shaping Transverse laser pulse shaping

(a)

0.0 23 r (mm

x, y (mm)

scannin

(c)

Round-to-flat beam

transformation

distance from photocathode (m)

accelerating cavity

solenoid lens LM solenoid

lens LF

RF gun

photocathode

(b)

 10^{-1}

(mm) 2 -20-20n 20 x (mm)

Halavanau, A., et al. PRAB 22.11 (2019): 114401.

Adjustable transverse beam masking

3

SLAC

(b)

Xu, T., et al. PRAB 25.4 (2022): 044001.

skew-quadrupole

magnets

Measuring 6D Beam Distributions

Multiple scanning slits with dipole and bunch shape monitor @ SNS (ORNL)

Cathey, Brandon, et al. PRL 121.6 (2018): 064804.

5D tomography with polarizable X-band TDC @ ARES (DESY)

Jaster-Merz, S., et al Proc. IPAC'22 (2022): 279-283.

Progress on Measuring 6D Beam Distributions

Multiple scanning slits with dipole and bunch shape monitor @ SNS (ORNL)

Cathey, Brandon, et al. PRL 121.6 (2018): 064804.

5 million (!) measurements ~ 32 hrs

5D tomography with polarizable X-band TDC @ ARES (DESY)

Jaster-Merz, S., et al Proc. IPAC'22 (2022): 279-283.

SLAC

960 measurements ~ 28 hrs Tomographic reconstruction ~ 24 hrs

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SART)

Hock K. and Ibison M., JINST, 2013

Progress on Measuring 6D Beam Distributions

<figure><figure><figure><complex-block>

5 million (!) measurements ~ 32 hrs

960 measurements **~ 28 hrs** Tomographic reconstruction **~ 24 hrs**

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SART)

Example: Quadrupole Scan @ AWA

Using Optimization to Reconstruct Distributions

Using Optimization to Reconstruct Distributions

Why Is This So Difficult?

-SLAC

Often required by analysis constraints (analytical tractability, optimization simplicity, etc.)

Costs of detailed beam representations

Histogramming scales poorly with number of dimensions, $N_{bins} \propto n^D$

Reasonable resolution, n = 100For a 6D distribution, $N_{bins} = 10^{12}!$

The Road to Efficient 6D Reconstructions

(1) Use **generative machine learning** to represent complex 6D beam distributions.

(2) Implement **differentiable** beam dynamics simulations to enable learning

Machine Learning Based Beam Representations

Use a generative machine learning model to create arbitrary beam distributions

O(~1000) parameters of the neural network control the distribution of particles in 6D phase space Learn the NN parameters → learn the beam distribution

The Road to Efficient 6D Reconstructions

Differentiable Beam Physics Simulations

K Y Z = f(Y; K)

 $O^{(i,j)} = \text{KDE}(Z)$

SLAC

Differentiable sims keep track of derivative information during **every** calculation step.

Enables cheap gradient evaluations which enable optimization of >10k free parameters.

$$\frac{\partial Z}{\partial Y}, \frac{\partial Z}{\partial K}, \frac{\partial \sigma_Z}{\partial K}, \dots \qquad \frac{\partial Q^{(i,j)}}{\partial Y}, \frac{\partial Q^{(i,j)}}{\partial K}$$

Allows us to extract information from the **individual pixels** of an image.

Generative Phase Space Reconstruction (GPSR)

Now we can use **gradient descent** to optimize (train) beam parameters \rightarrow **necessary** for learning O(~1000) parameters

Roussel, Ryan, et al. PRL (2023)

Four-dimensional reconstructions using GPSR

6D Phase Space Reconstruction (Simulation)

Logical next step, combine 4D reconstructions from quad scans with single shot longitudinal phase space diagnostics

Reconstruction Results (Simulation)

Successful reconstruction with 20 measurements, ~8 min computation time

Experimental Results from AWA

 k_1 (1/m²) -2.9 0.0 -1.5 1.5 T.D.C.: off DIPOLE: off Argonne T.D.C.: on DIPOLE: off Transverse Deflecting Q1 Q4 Cavity (vertical) Q2 Q3 Dipole YAG2 T.D.C.: off DIPOLE: on YAG1 Focusing Scanning Quadrupoles Quadrupole T.D.C.: on DIPOLE: on

Measurement data

Roussel, R, et al. <u>https://arxiv.org/abs/2404.10853</u> (Submitted to PRAB)

19

SLAC

2.9

Experimental Results from AWA

Reconstruction predictions on test data

Predicted

Measured

Roussel, R, et al. <u>https://arxiv.org/abs/2404.10853</u> (Submitted to PRAB)

20

Experimental Results from AWA

Conclusion

- Generative modeling + differentiable physics simulations (GPSR) → substantial improvements in analysis capabilities
- Experimental demonstration at AWA → reconstructions + analysis in ~ 17 mins → can be further improved
- Enables better understanding of beam distributions in experiment → better wakefield accelerators, beams for colliders/cooling, better understanding of beam physics (CSR)

Questions?

SLAC

- Auralee Edelen
- Chris Mayes
- Daniel Ratner

U. Chicago

- Juan Pablo Gonzalez-Aguilera

Argonne Wakefield Accelerator

- Seongyeol Kim
- John Power
- Eric Wisniewski
- Wanming Liu
- Alexander Ody

Thanks to the team!

GPSR Synthetic Example

Reconstruction Results (Gaussian Beam)

26

Reconstruction Results (EEX Beam)

27

Needs From the Accelerator Community

- There is a need for fast, sample efficient methods to reconstruct detailed 6D beam distributions
- This would enable:
 - Practical optimization of complex beam distributions for wakefield acceleration, magnetized beams, collective effect mitigation, free electron accelerators
 - Improvements in understanding complex physical phenomena (plasma wakes, coherent synchrotron radiation (CSR) on beam distributions)

High transformer ratio wakefield acceleration using triangular beams

Roussel, R, et al. PRL 124.4 (2020): 044802.

