Machine Learning Based, Non-invasive Beam Diagnostics

Robbie Watt, Brendan O'Shea

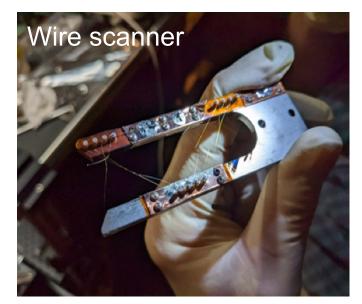
- Why are non-invasive beam diagnostics important?
- Why edge radiation is ideal for non-invasive beam diagnostics
- Diagnostic setup at FACET-II
- Using a computer vision model to infer beam size
- Extract more information using a physics informed loss function

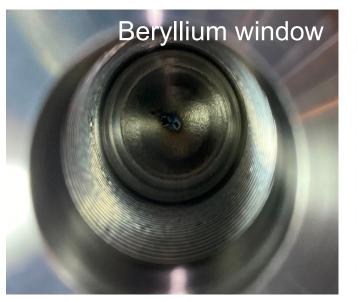
Why are Non-Invasive Beam Diagnostics Important?

Conventional beam diagnostics have two main drawbacks:

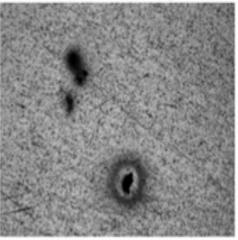
- Material in the beam path destroys the downstream quality
- High intensity beams can destroy the diagnostic making it expensive to operate

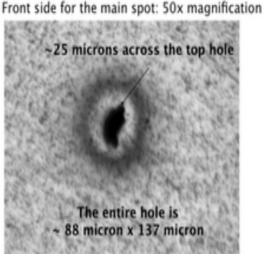
Non intercepting diagnostics fix both issues!





Front Side (polished): 25x magnification

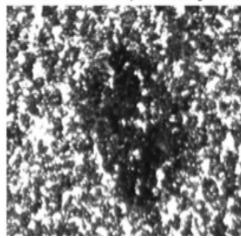




Back side: 25x magnification

SLAC

Back side for the main spot: 50x magnification



Edge Radiation for Non-Invasive Diagnostics

SLAC

Edge radiation is the synchrotron radiation emitted at the edges of dipoles.

We can model edge radiation by solving the Liénard–Wiechert field:

$$\mathbf{E}_{\omega} = \frac{ie\omega}{c} \int_{-\infty}^{\infty} \frac{1}{R} \Big[\boldsymbol{\beta} - \Big(1 + \frac{ic}{\omega R} \Big) \mathbf{n} \Big] e^{i\omega(t + R/c)} \mathrm{d}t$$

Total intensity is obtained by convolving beam distribution over single electron field:

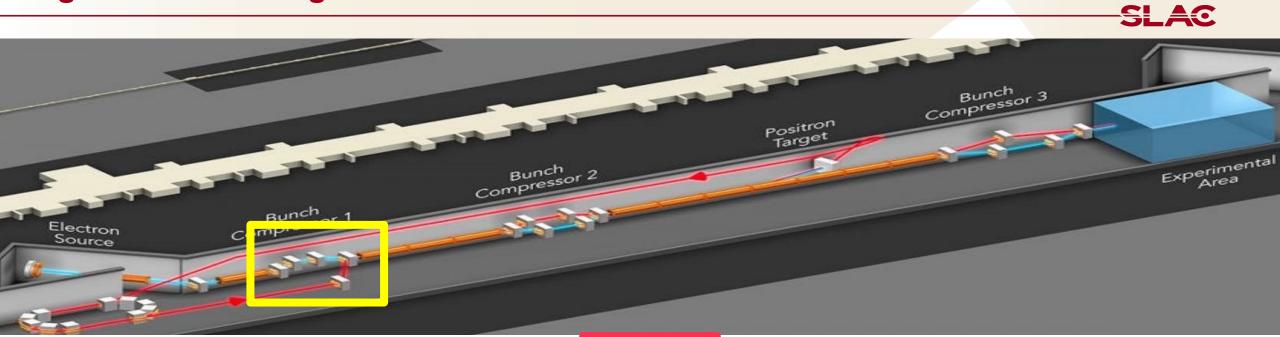
$$I(\mathbf{x}) = \left| \int \mathbf{E}(\mathbf{x} - \mathbf{x'})\rho(\mathbf{x})d\mathbf{x} \right|^2$$

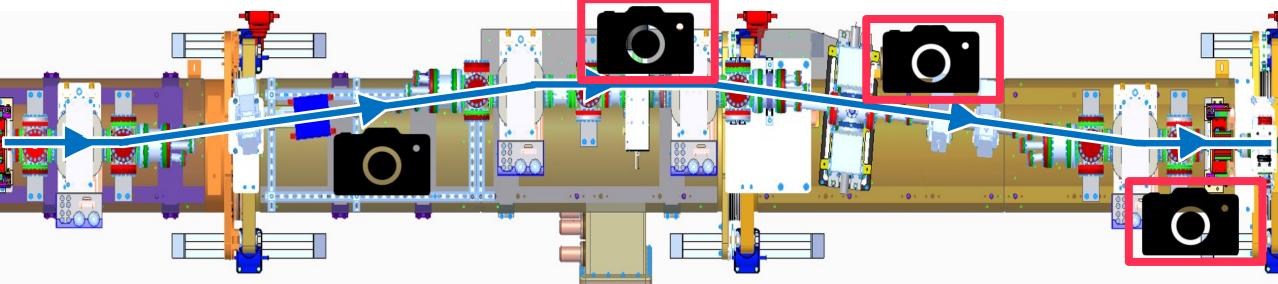
The intensity fringes are sensitive to the transverse beam parameters (size, divergence, correlation)

Edge-Radiation is ideal for non-invasive single shot diagnostics

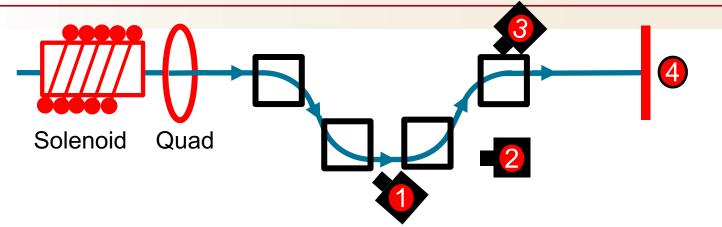
Simulation with SyRiPy: https://github.com/robbiewatt1/SYRIPY

Edge Radiation Diagnostics at FACET II





BC11 Dataset

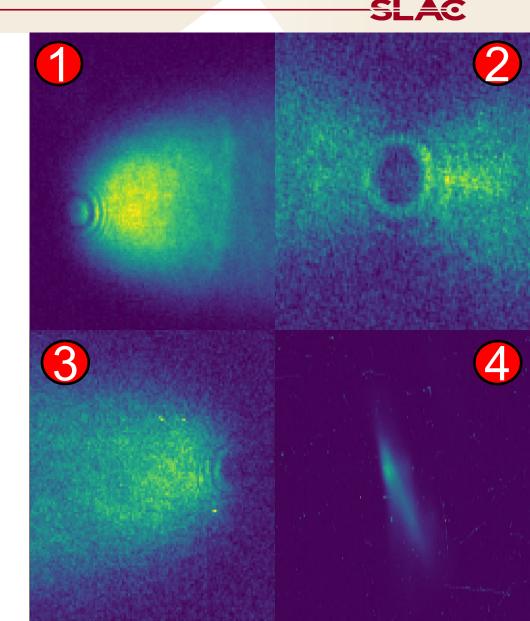


<u>Aim</u>: Build a model to predict beam parameters from radiation

<u>Require</u>: A dataset of images for a verity of beam conditions

- Solenoid varied to change beam emittance.
- Quad varied to change beam parameters and measure emittance.

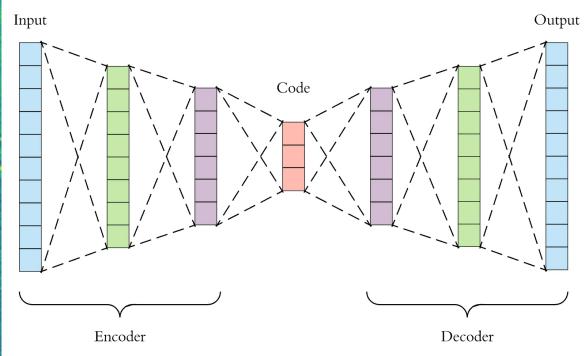
Main dataset 6 soln steps (9µm to 14µm) 40 quad field steps 40 shots per configuration 9600 total shots



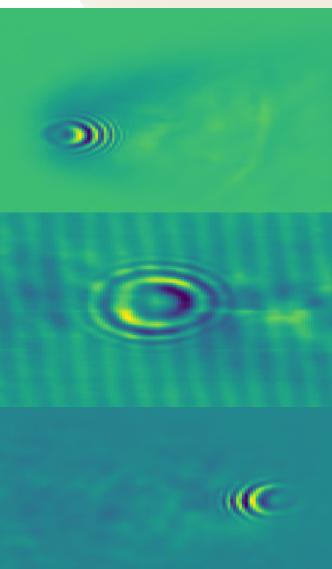
Latent Representation of Images

SLAC

We have lots more unmatched data. Images are high dimensional objects that are hard to work with. An <u>autoencoder</u> can help!



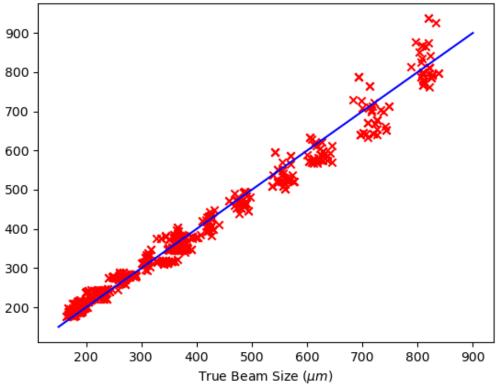
Each image is well represented by only 5 latent parameters.



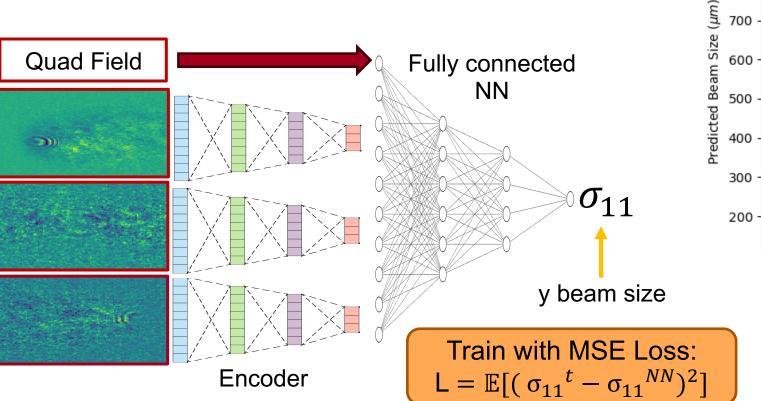
SLAC

We have a latent representation of images and the corresponding downstream beam size. Therefore, We can train a virtual diagnostic for the beam size using supervised learning.

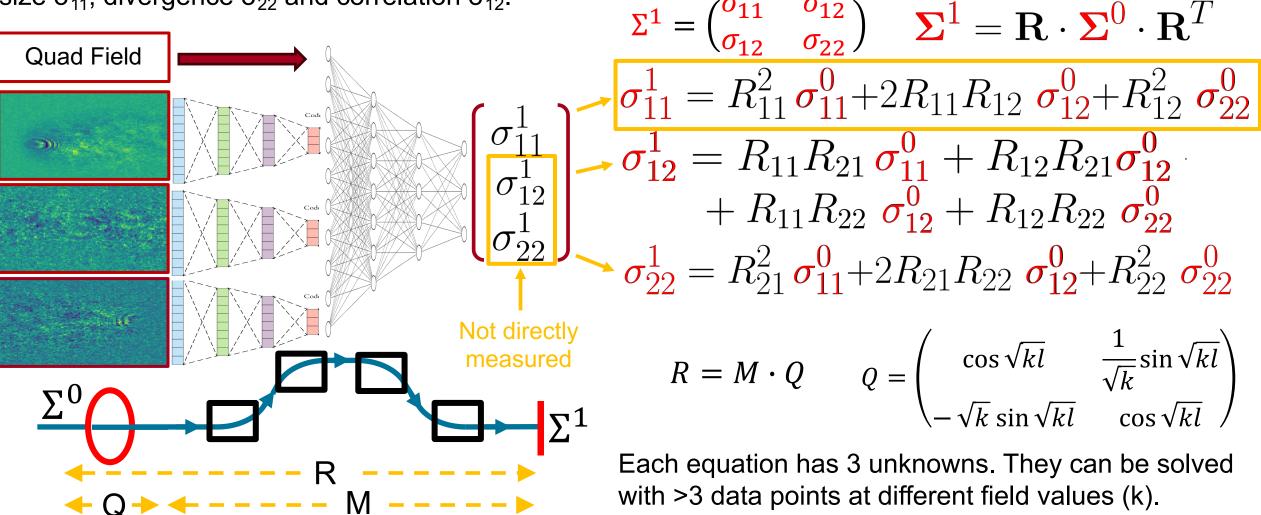
True vs predicted beam size



This model gives us a non-invasive, single shot measurement of the beam size!

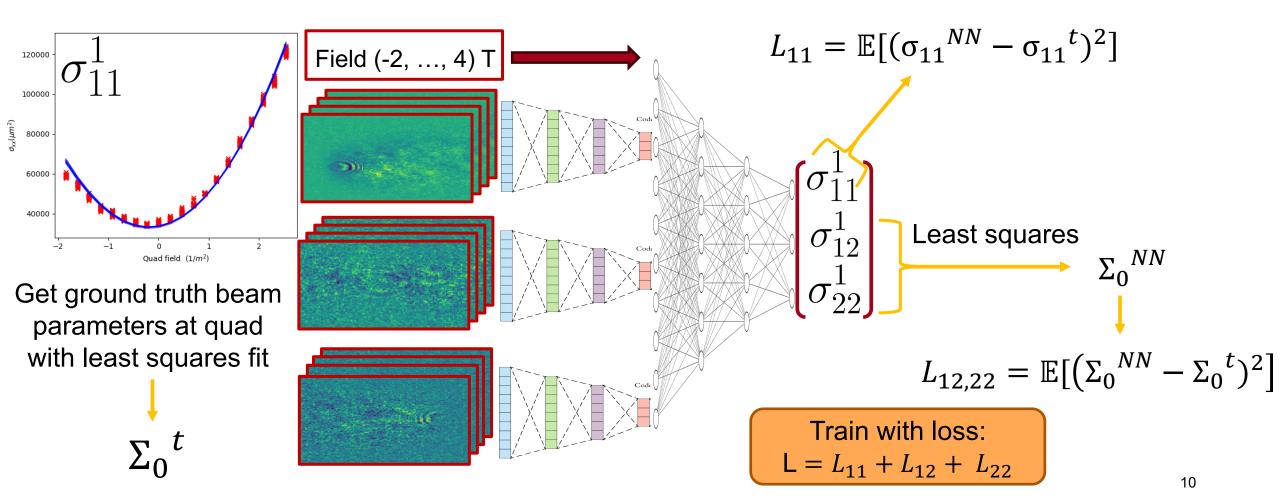


We want a single shot beam emittance measurement. Therefore, the network should return the beam size σ_{11} , divergence σ_{22} and correlation σ_{12} .



Getting More with a Physics Based Loss

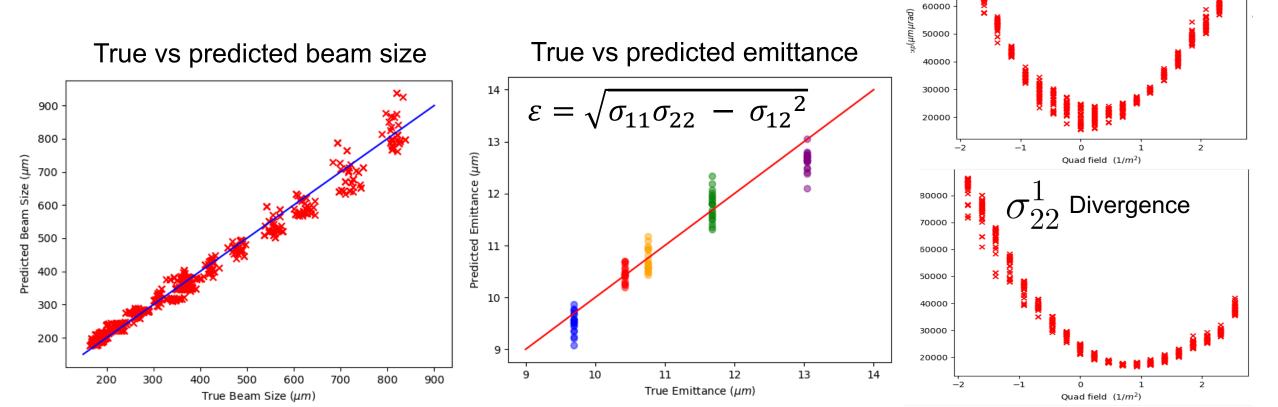
We can perform a quad scan with the beam size measurements to obtain the beam parameters at the upstream quad. This is then used to constrain the unmeasured model outputs (divergence and correlation).



Model Results

Model performs well on test set:

- Predicted beam size is highly correlated with true beam size
- Size, correlation and divergence vary approximately quadratically against field strength
- The predicted emittance is highly correlated with the true emittance



180000

140000

120000 100000 80000

60000

40000

80000

70000

 σ

12

Size

Quad field (1/m²)

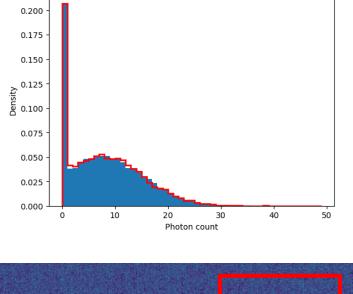
correlation

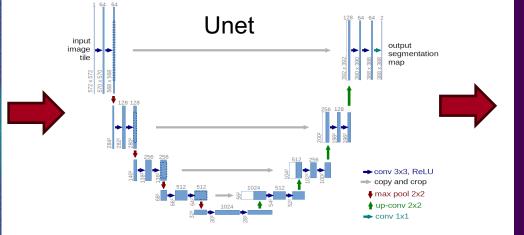
- Non-invasive diagnostics prevent the mutual destruction of diagnostics and downstream quality
- Edge radiation is non-invasive and sensitive to beam parameters, making it ideal for diagnostics
- We have developed a virtual diagnostic of the beam size using a computer vision model
- More information (including the emittance) can be extracted by constraining the loss with physics

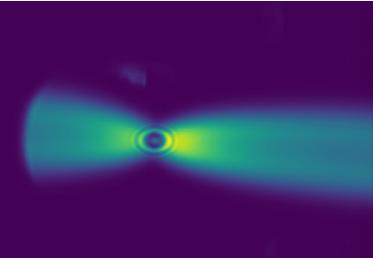
Removing Noise with a UNet

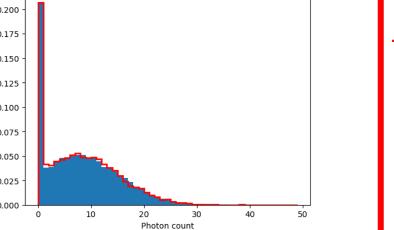
SLAC

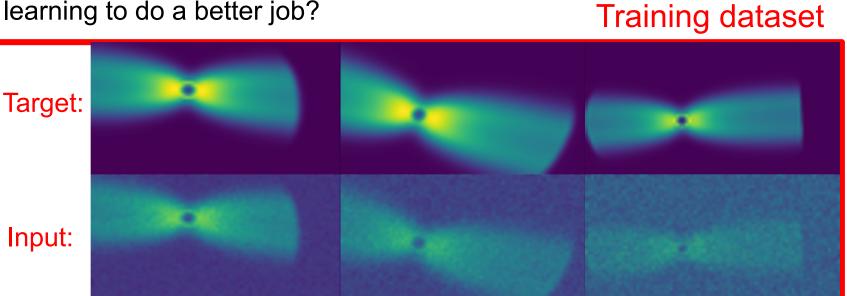
Can we use simulations and deep learning to do a better job?











MLE Inference of Beam Parameters

-SLAC

