Measurement of CSR-Affected Beams using Generative Phase Space Reconstruction*

Advanced Accelerator Concepts

Naperville, IL

July 23rd , 2024

J.P. Gonzalez-Aguilera

University of Chicago

jpga@uchicago.edu

*Gonzalez-Aguilera et. al., Proc. IPAC'24

Our Team

THE UNIVERSITY OF CHICAGO

Young-Kee Kim J.P. Gonzalez-Aguilera

NATIONAL ACCELERATOR LABORATORY

Ryan Roussel

Wanming Liu

Eric Wisniewski

Alexander Ody

John Power

Philippe Piot

This work was supported by:

• NSF award PHY-1549132, the Center for Bright Beams

• DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Outline

- Introduction
 - Coherent Synchrotron Radiation (CSR)
 - Importance
 - Measurement
 - 6D generative phase space reconstruction (GPSR Ryan Roussel's talk)
- Simulation studies of CSR at the Argonne Wakefield Accelerator (AWA)
- Detailed characterization of CSR using GPSR
- Discussion
- Summary and Conclusions

Coherent Synchrotron Radiation (CSR)

- FELs, need highly compressed beams longitudinally
- Dispersive lattices are used to compress the beams (e.g., chicanes)
- Coherent synchrotron radiation (CSR) is produced when bending beam trajectory
- CSR degrades beam quality

A. Edelen et al., IPAC 2022

CSR is a complex phenomenon that degrades beam quality

CSR Degrades Beam Quality

 Short-range CSR wakefield induces nonlinear kick in E vs z

- Dipoles also introduce x, p_x correlations with E
- Result: rotation and centroid shift of x, p_x longitudinal slices, increasing the projected ε_x

Measurement of CSR Effects

Studies of CSR effects are often limited to **macro-scale** description of beam distribution:

-Projected ε_x growth

Does not resolve detailed beam structure!

Six-Dimensional Phase Space Reconstruction

- Generate a beam influenced by CSR in double dogleg
- Measure phase space after 4th dipole with beam diagnostics

Adapted from N. Majernik et al., PRAB, 2023. 8

Beam Dynamics at AWA Double Dogleg

- Can we see CSR effects after double dogleg?
- Initial beam (ideal):
 - -1 nC, 43.4 MeV
 - $-\varepsilon_x = 25 \text{ mm mrad}$
 - -3 mm beam size, 1mm bunch length

8

Simulated CSR Effects: E - z and $x - p_x$

GPSR Training Data

GPSR Results: 2D Projections

 50 th percentile reconstructed
 50 th percentile ground truth
 95 th percentile reconstructed
 95 th percentile ground truth

Gonzalez-Aguilera et. al., Proc. IPAC'24 12

Detailed $x - p_x$ **Phase Space Slices**

Discussion

- Need of small emittance and energy spread to resolve CSR
 - -GPSR struggles to get correct slice rotations when going beyond $\varepsilon_x = 25 \text{ mm mrad}$ or under $\delta_E = 0.1\%$ at 1nC
 - It seems that these beam parameters are achievable at AWA
- Longitudinal and transverse optics (work in progress):
 - -Could compress beam at last dipole to promote CSR wake with larger beams:
 - Hardware: linac RF cavity phase to induce longitudinal chirp
 - -Could test transverse optics to change Twiss parameters:
 - Hardware: quadrupoles
- Define metrics to compare >2D beam distributions
 - How can we compare high-dimensional beam distributions quantitatively?

• AWA double dogleg can produce significant CSR effects

• Simulations show 6D GPSR can resolve CSR effects in the

$$\varepsilon_{\chi} = 25 \text{ mm mrad}, \sigma_{\chi} = 3 \text{ mm case}$$

Only 20 x-y beam profiles

-~10 min, 8 Gb GPU

- Need small ε_x and δ_E to resolve CSR effect
 - -Further study of transverse optics is necessary
- Future work:
 - -Experimental demonstration coming soon

0.6 0.4 **Thanks!** $p_X/p (\times 10^3)$ 0.2 **Questions?** 0.0 -0.2 $\begin{array}{c} -4 \\ -2 \\ 0 \\ 2 \\ 4 \end{array}$ [mm]+ Gonzalez-Aguilera et. al., Proc. IPAC'24 -0.4-3 -2 -10 1 2 3

This work was supported by:

- NSF award PHY-1549132, the Center for Bright Beams
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Argor

z [mm]

Backup: AWA realistic parameters

> At the end of the drive linac section

Parameters	Short pulse case (0.3 ps)	Long pulse case (6.0 ps)
RMS beam size	0.45 mm (without quads)	0.3 mm (without quads)
RMS bunch length	0.4 mm	0.64 mm
RMS energy spread	0.43%	0.25%
Normalized emittance	3.6 mm mrad	2.3 mm mrad

Courtesy of Seongyeol Kim, 2022

Realistic Beam (preliminary)

- 1 nC
- Simulations from photocathode
- Space charge

CSR or just dispersion?

GPSR Training Data

GPSR Results: 2D Projections

 50 th percentile reconstructed
 50 th percentile ground truth
 95 th percentile reconstructed
 95 th percentile ground truth

Backup: CSR effects after every dipole

Backup: CSR Effects at Diagnostics Spectrometer

Backup: OPAL CSR Settings

- CSR_FILTER:
- FILTER,
- TYPE = "Savitzky-Golay",
- NPOINTS = 20,
- NLEFT = 4,
 - NRIGHT = 4,
 - POLYORDER = 4;
- CSR_WK:
- WAKE,
- TYPE="1D-CSR",
- NBIN=300,
- FILTERS=CSR_FILTER;