UNIVERSITY OF OSLO

Development of a nonlinear plasma lens for achromatic transport

Pierre DROBNIAK

Department of Physics, University of Oslo

25th July 2024 | NIU Naperville Conference Center | AAC24

1. SPARTA project

1. SPARTA project

2. Achromatic staging

- 1. SPARTA project
- 2. Achromatic staging
- 3. Non-linear plasma lens

- 1. SPARTA project
- 2. Achromatic staging
- 3. Non-linear plasma lens
- 4. Experimental campaign

1. SPARTA

Staging of Plasma Accelerators for Realizing Timely Applications

1. SPARTA

OF OSLO

Staging of Plasma Accelerators for Realizing Timely Applications

Image credits Carl. A. Lindstrøm

1. SPARTA

OF OSLO

Staging of Plasma Accelerators for Realizing Timely Applications

Image credits Carl. A. Lindstrøm

Motivation for achromatic solution

Motivation for achromatic solution

UNIVERSITY OF OSLO

Experimental setup from Steinke et al. (2016) [1]

[1] Steinke et al. (2016). Multistage coupling of independent laser-plasma accelerators. Nature, 530(7589), 190-193. $4\/\22$

Motivation for achromatic solution

Experimental setup from Steinke et al. (2016) [1]

[1] Steinke et al. (2016). Multistage coupling of independent laser-plasma accelerators. Nature, 530(7589), 190-193. $4\/\ 22$

Motivation for achromatic solution

UNIVERSITY

OF OSLO

Experimental setup from Steinke et al. (2016) [1]

[1] Steinke et al. (2016). Multistage coupling of independent laser-plasma accelerators. Nature, 530(7589), 190-193. $4\/\ 22$

Lattice presentation: stage & inter-stage

Lattice presentation: stage & inter-stage

Achromatic lattice for laser-driven / beam-driven schemes [2]

Lattice presentation: stage & inter-stage

Achromatic lattice for laser-driven / beam-driven schemes [2]

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

UNIVERSITY

OF OSLO

2022: Lindstrøm, "Solutions and challenge for a multi-stage plasma accelerator". Manuscript in preparation.

UNIVERSITY

OF OSLO

for a multi-stage plasma accelerator". Manuscript in preparation.

UNIVERSITY

OF OSLO

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

Inter-stage: role of each element

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

Look at the **transverse** phase-space only: **dispersion**

Look at the **transverse** phase-space only: **dispersion**

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm. "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

Look at the **transverse** phase-space only: **dispersion**

25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

Look at the **transverse** phase-space only: **dispersion**

25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

OF OSLO

Look at the transverse phase-space only: emittance

[2] Image adapted from a presentation given at the EuroNNAc Special Topics
Workshop 2022: Lindstrøm,
"Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

Look at the transverse phase-space only: emittance

[2] Image adapted from a presentation given at the EuroNNAc Special Topics
Workshop 2022: Lindstrøm,
"Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

UNIVERSITY OF OSLO

What is it ?

What is it ?

> <u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

Existing plasma lens [3]

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

What is it ?

> <u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

 $\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$

Existing plasma lens [3]

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY OF OSLO 25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

What is it ?

<u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$$

> If *J_z* is uniform: **linear** lens

Existing plasma lens [3]

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY OF OSLO 25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

What is it ?

<u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$$

> If *J_z* is uniform: **linear** lens

$$g_r = \frac{\partial B_{\Phi}}{\partial r} = \frac{\mu_0 I_0}{2 \pi R^2} = cst$$

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

Existing plasma lens [3]

What is it ?

<u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$$

> If *J_z* is uniform: **linear** lens

$$g_r = \frac{\partial B_{\Phi}}{\partial r} = \frac{\mu_0 I_0}{2 \pi R^2} = cst$$

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY OF OSLO 25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

What is it ?

<u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$$

If J_z is uniform: linear lens

$$g_r = \frac{\partial B_{\Phi}}{\partial r} = \frac{\mu_0 I_0}{2 \pi R^2} = cst$$

> If *J_z* is non-uniform: **non-linear** lens

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

What is it ?

<u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$$

If J_z is uniform: linear lens

$$g_r = \frac{\partial B_{\Phi}}{\partial r} = \frac{\mu_0 I_0}{2 \pi R^2} = cst$$

If J_z is non-uniform: **non-linear** lens

 $g_r = f(x, y)$

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY OF OSLO 25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

What is it ?

<u>B</u>-field: generated by longitudinal current J_z along z, in capillary of radius R (see [4] for more information)

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\Phi}) = \mu_0 J_z(r), \forall r < R$$

If J_z is uniform: linear lens

$$g_r = \frac{\partial B_{\Phi}}{\partial r} = \frac{\mu_0 I_0}{2 \pi R^2} = cst$$

If J_z is non-uniform: **non-linear** lens

 $g_r = f(x, y)$

[3] Image adapted from: Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306.
[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY OF OSLO 25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

How to make the **non-radially-symmetric** <u>B</u> distribution?

How to make the **non-radially-symmetric** <u>B</u> distribution?

> Motivation: article by Kunkel - Hall effect in a plasma - (1981) [5]

How to make the **non-radially-symmetric** <u>B</u> distribution?

- > Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:

How to make the **non-radially-symmetric** <u>B</u> distribution?

- > Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)

How to make the **non-radially-symmetric** <u>B</u> distribution?

- > Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)
 - Internal <u>E</u>-field (reaction of the plasma along X)

How to make the **non-radially-symmetric** <u>B</u> distribution?

- Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)
 - Internal <u>E</u>-field (reaction of the plasma along X)
 - Non-radially symmetric *n_e* distribution

n? American Journal of Physics, 49(8), 733-738.

[5] Kunkel, W. B. (1981). Hall effect in a plasma.

How to make the **non-radially-symmetric** <u>B</u> distribution?

- Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)
 - Internal <u>E</u>-field (reaction of the plasma along X)
 - Non-radially symmetric *n_e* distribution
 - Non-radially symmetric J_z distribution (/ depends on n_e)

How to make the **non-radially-symmetric** <u>B</u> distribution?

- Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)
 - Internal <u>E</u>-field (reaction of the plasma along X)
 - Non-radially symmetric *n_e* distribution
 - Non-radially symmetric J_z distribution (/ depends on n_e)
 - Non-radially symmetric (B_x, B_y) distribution

How to make the **non-radially-symmetric** <u>B</u> distribution?

- Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)
 - Internal <u>E</u>-field (reaction of the plasma along X)
 - Non-radially symmetric *n_e* distribution
 - Non-radially symmetric J_z distribution (/ depends on n_e)
 - Non-radially symmetric (B_x, B_y) distribution
- > Seems feasible according to Kunkel's article (with $B \propto 10 \, mT$)

How to make the **non-radially-symmetric** <u>B</u> distribution?

- > Motivation: article by Kunkel Hall effect in a plasma (1981) [5]
- > Working principle:
 - External <u>B</u>-field (along Y for example)
 - Internal <u>E</u>-field (reaction of the plasma along X)
 - Non-radially symmetric *n_e* distribution
 - Non-radially symmetric J_z distribution (/ depends on n_e)
 - Non-radially symmetric (B_x, B_y) distribution
- > Seems feasible according to Kunkel's article (with $B \propto 10 \, mT$)

[5] Kunkel, W. B. (1981). Hall effect in a plasma. American Journal of Physics, 49(8), 733-738.
[6] S. M. Mewes (DESY), G. J. Boyle (James Cook University) et al., Demonstration of tunability of HOFI waveguides via start-to-end simulations. Phy

Hydrodynamics simulations currently performed with the COMSOL module by Mathis Mewes (DESY) et al. based on [6]

UNIVERSITY OF OSLO 25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK
LINEAR
$$\begin{cases} B_x = -g y \\ B_y = g x \end{cases}$$

NON-LINEAR $\begin{cases} B_x = -g\left(y + \frac{1}{D_x}xy\right) \\ B_y = g\left(x + \frac{1}{D}\frac{x^2 + y^2}{2}\right) \end{cases}$

Which B-field distribution in the lens?

OF OSLO

Which B-field distribution in the lens?

OF OSLO

- - D_x (given by the beam dispersion entering the

UNIVERSITY OF OSLO

UNIVERSITY OF OSLO

Is a non-linear B distribution feasible ?

Is a non-linear B distribution feasible ?

> Non-linear B-field distribution already experimentally observed

Is a non-linear B distribution feasible ?

> Non-linear B-field distribution already experimentally observed

focusing strength (*r*-dependence) [4]

[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY

OF OSLO

Is a non-linear B distribution feasible ?

Non-linear B-field distribution already experimentally observed
 Origins:

focusing strength (*r*-dependence) [4]

[4] Lindstrøm, C. A. et al. (2018). Emittance preservation in an aberration-free active plasma lens. Physical review letters, 121(19), 194801.

UNIVERSITY

OF OSLO

Is a non-linear B distribution feasible ?

- Non-linear B-field distribution already experimentally observed
 Origins:
 - Non-uniform T distribution

UNIVERSITY

OF OSLO

focusing strength (*r*-dependence) [4]

Is a non-linear B distribution feasible ?

- Non-linear B-field distribution already experimentally observed
- > Origins:

UNIVERSITY

OF OSLO

- Non-uniform T distribution
- Non-uniform conductivity

focusing strength (*r*-dependence) [4]

Is a non-linear B distribution feasible ?

- Non-linear B-field distribution already experimentally observed
- > Origins:

UNIVERSITY

OF OSLO

- Non-uniform T distribution
- Non-uniform conductivity
- Non-uniform J_z distribution

focusing strength (*r*-dependence) [4]

Is a non-linear B distribution feasible ?

- Non-linear B-field distribution already experimentally observed
- > Origins:

UNIVERSITY

OF OSLO

- Non-uniform T distribution
- Non-uniform conductivity
- Non-uniform J_z distribution
- **Non-linear** B-field distribution (= **dispersive**)

focusing strength (*r*-dependence) [4]

Is a non-linear B distribution feasible ?

- Non-linear B-field distribution already experimentally observed
- > Origins:
 - Non-uniform T distribution
 - Non-uniform conductivity
 - Non-uniform J_z distribution
 - Non-linear B-field distribution (= dispersive)
- > Comment:

UNIVERSITY

OF OSLO

focusing strength (*r*-dependence) [4]

Is a non-linear B distribution feasible ?

- Non-linear B-field distribution already experimentally observed
- > Origins:
 - Non-uniform T distribution
 - Non-uniform conductivity
 - Non-uniform J_z distribution
 - Non-linear B-field distribution (= dispersive)
- > Comment:

UNIVERSITY

OF OSLO

- this observed non-linearity is radially symmetric...

Experimental measurement of non-linear focusing strength (*r*-dependence) [4]

Is a non-linear B distribution feasible ?

- > Non-linear B-field distribution already experimentally observed
- > Origins:
 - Non-uniform T distribution
 - Non-uniform conductivity
 - Non-uniform J_z distribution
 - Non-linear B-field distribution (= dispersive)
- > Comment:

UNIVERSITY

OF OSLO

- this observed non-linearity is radially symmetric...

But we only want to disperse in X

Experimental measurement of non-linear focusing strength (*r*-dependence) [4]

[2] Image adapted from a presentation given at the EuroNNAc Special Topics Workshop 2022: Lindstrøm, "Solutions and challenges for a multi-stage plasma accelerator". Manuscript in preparation.

First MHD results

> Simulations:

First MHD results

> Simulations:

 in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size

First MHD results

> Simulations:

- in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
- with H_2 (for the moment; heavier-species model under construction)

- > Simulations:
 - in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
 - with H_2 (for the moment; heavier-species model under construction)
- > Objective: validate the Hall effect using an external Bfield, resulting in

- > Simulations:
 - in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
 - with H_2 (for the moment; heavier-species model under construction)
- > Objective: validate the Hall effect using an external Bfield, resulting in
 - **g** ∈ [200 1000] T/m

- > Simulations:
 - in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
 - with H_2 (for the moment; heavier-species model under construction)
- > Objective: validate the Hall effect using an external Bfield, resulting in
 - **g** ∈ [200 1000] T/m
 - $D_x = 10 \text{ mm} (1/D_x = 10\%/\text{mm})$

- > Simulations:
 - in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
 - with H_2 (for the moment; heavier-species model under construction)
- > Objective: validate the Hall effect using an external Bfield, resulting in
 - − **g** ∈ [200 1000] T/m
 - $D_x = 10 \text{ mm} (\mathbf{1}/D_x = 10\%/\text{mm})$
- > First results

- > Simulations:
 - in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
 - with H_2 (for the moment; heavier-species model under construction)
- Objective: validate the Hall effect using an external Bfield, resulting in
 - **g**∈[200 1000] T/m
 - $D_x = 10 \text{ mm} (\mathbf{1}/D_x = 10\%/\text{mm})$
- > First results
 - Good results for *g* and *1/D_x*

1D simulation of g and D_x across the capillary with H_2 at 13 mbar, $B_{ext} = 10 \text{ mT}$

- > Simulations:
 - in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
 - with H_2 (for the moment; heavier-species model under construction)
- Objective: validate the Hall effect using an external Bfield, resulting in
 - − **g** ∈ [200 1000] T/m
 - $D_x = 10 \text{ mm} (\mathbf{1}/D_x = 10\%/\text{mm})$
- > First results
 - Good results for g and 1/D_x
 - Too short operating window (few ns)

1D simulation of g and D_x across the capillary with H_2 at 13 mbar, $B_{ext} = 10 \text{ mT}$

First MHD results

Simulations: >

- in 1D (for the moment) only in X-direction (infinite in Y and Z), with 1 mm size
- with H_2 (for the moment; heavier-species model under construction)
- **Objective:** validate the **Hall effect** using an external Bfield, resulting in
 - *q* ∈ [200 1000] T/m
 - $D_x = 10 \text{ mm} (1/D_x = 10\%/\text{mm})$
- **First results** >
 - Good results for q and $1/D_x$
 - Too short operating window (few ns)
 - Heavier species should make the dynamics slower (slower thermal exchanges)

1D simulation of q and D_x across the capillary with H_2 at 13 mbar, $B_{ext} = 10 \text{ mT}$

13/22
How to make the **external** B-field ?

How to make the **external** B-field ?

> Electromagnet

UNIVERSITY OF OSLO

COMSOL model, with magnet and 20 mm-long capillary

Electromagnet

>

with magnet and 20 mm-long capillary

>

UNIVERSITY OF OSLO

25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

UNIVERSITY OF OSLO

How to make the **external** B-field ?

How to make the **external** B-field ?

How to make the **external** B-field ?

Assuming 0.1T magnetisation

25 Jul. 2024 | NIU Naperville Conference Center | AAC24 | Pierre DROBNIAK

UNIVERSITY

OF OSLO

How to make the **external** B-field?

UNIVERSITY OF OSLO

Design

Design

Plasma lens design 15 Jul. 2024 (Credits: I-Lab)

Design

Plasma lens design 15 Jul. 2024 (Credits: I-Lab)

Design

Plasma lens design 15 Jul. 2024 (Credits: I-Lab)

Design

15 Jul. 2024 (Credits: I-Lab)

Design

UNIVERSITY OF OSLO

Design

UNIVERSITY OF OSLO

First built prototype,

5 Jul. 2024

UNIVERSITY OF OSLO

Objectives

Objectives

> **Design preliminary tests** at UiO (everything that does not require an accelerator):

Objectives

- > **Design preliminary tests** at UiO (everything that does not require an accelerator):
 - Assembly (dimensions, materials, technical solutions selected)

Objectives

- > **Design preliminary tests** at UiO (everything that does not require an accelerator):
 - Assembly (dimensions, materials, technical solutions selected)
 - Electromagnet (external <u>B</u>-field measurement)

Objectives

- > **Design preliminary tests** at UiO (everything that does not require an accelerator):
 - Assembly (dimensions, materials, technical solutions selected)
 - Electromagnet (**external** <u>B</u>-field measurement)
- > **Real operating condition** tests (accelerator facilities):

Current B-field

Objectives

- > **Design preliminary tests** at UiO (everything that does not require an accelerator):
 - Assembly (dimensions, materials, technical solutions selected)
 - Electromagnet (**external** <u>B</u>-field measurement)
- > **Real operating condition** tests (accelerator facilities):
 - Short term: characterise the lens = map the total <u>B</u>-field in the XY-plane → CLEAR (see next slides)

Current B-field

Objectives

- > **Design preliminary tests** at UiO (everything that does not require an accelerator):
 - Assembly (dimensions, materials, technical solutions selected)
 - Electromagnet (**external** <u>B</u>-field measurement)
- > **Real operating condition** tests (accelerator facilities):
 - Short term: characterise the lens = map the total <u>B</u>-field in the XY-plane → CLEAR (see next slides)
 - Mid term: prove the non-linear lensing effect (1 lens only)

Objectives

- > **Design preliminary tests** at UiO (everything that does not require an accelerator):
 - Assembly (dimensions, materials, technical solutions selected)
 - Electromagnet (**external** <u>B</u>-field measurement)
- > **Real operating condition** tests (accelerator facilities):
 - Short term: characterise the lens = map the total <u>B</u>-field in the XY-plane → CLEAR (see next slides)
 - Mid term: prove the non-linear lensing effect (1 lens only)
 - Long term: build an entire interstage (dipole+lens+sextupole+lens+dipole) to test XY emittance preservation & charge preservation.

Existing CLEAR facility and set-up

Existing CLEAR facility and set-up

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

Beam parameters:

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

Beam parameters:

60-200 MeV,

Existing Plasma Lens Experiment set-up at CLEAR [7]
Existing CLEAR facility and set-up

- Beam parameters:
 - 60-200 MeV,
 - 10 pC 50 nC / pulse,

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

UNIVERSITY

OF OSLO

Beam parameters:

- 60-200 MeV,
- 10 pC 50 nC / pulse,
- 1 100 bunches / pulse,

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

Beam parameters:

- 60-200 MeV,
- 10 pC 50 nC / pulse,
- 1 100 bunches / pulse,
- 1 10 pulses/s,

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

Beam parameters:

- 60-200 MeV,
- 10 pC 50 nC / pulse,
- 1 100 bunches / pulse,
- 1 10 pulses/s,
- pulse length 1 ps 50 ns,

Existing Plasma Lens Experiment set-up at CLEAR [7]

Existing CLEAR facility and set-up

Beam parameters:

- 60-200 MeV,
- 10 pC 50 nC / pulse,
- 1 100 bunches / pulse,
- 1 10 pulses/s,
- pulse length 1 ps 50 ns,
- Focus down to 50x50 μmxμm.

Existing Plasma Lens Experiment set-up at CLEAR [7]

2024 at CLEAR

2024 at CLEAR

> The CLEAR Plasma Lens Experiment (continuation)

2024 at CLEAR

> The CLEAR Plasma Lens Experiment (continuation)

Collaboration with:

2024 at CLEAR

- > The CLEAR Plasma Lens Experiment (continuation)
- Collaboration with:

> Objective: characterise the lens = measure the total <u>B</u> by moving the lens relatively to the beam

2024 at CLEAR

- > The CLEAR Plasma Lens Experiment (continuation)
- Collaboration with:

UNIVERSITY

OF OSLO

> Objective: characterise the lens = measure the total <u>B</u> by moving the lens relatively to the beam

Schematic of the CLEAR Plasma Lens Experiment [8]

[8] Sjobak et al. (2021). Strong focusing gradient in a linear active plasma lens. Physical Review Accelerators and Beams, 24(12), 121306 $19\/22$

> **SPARTA** project:

- Several objectives, among which: achromatic staging

- Several objectives, among which: achromatic staging
- Non-linear plasma lens is a key element

- Several objectives, among which: achromatic staging
- Non-linear plasma lens is a key element
- > Achromatic staging:

- Several objectives, among which: achromatic staging
- Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- > Non-linear plasma lens:

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- > Non-linear plasma lens:
 - Development at UiO (design)

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- > Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- > Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations
- > Experimental campaign:

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- > Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations

> Experimental campaign:

 UiO: experiments not requiring an accelerator facility (prototype development, electromagnetgenerated B-Field measurement)

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations

- UiO: experiments not requiring an accelerator facility (prototype development, electromagnetgenerated B-Field measurement)
- **CLEAR** (2024): first non-linear plasma lens characterisation

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations

- UiO: experiments not requiring an accelerator facility (prototype development, electromagnetgenerated B-Field measurement)
- **CLEAR** (2024): first non-linear plasma lens characterisation
- > Other developments:

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations

- UiO: experiments not requiring an accelerator facility (prototype development, electromagnetgenerated B-Field measurement)
- **CLEAR** (2024): first non-linear plasma lens characterisation
- > Other developments:
 - Mid term objective: prove achromatic lensing effect (1 lens only)

- > **SPARTA** project:
 - Several objectives, among which: achromatic staging
 - Non-linear plasma lens is a key element
- > Achromatic staging:
 - Theoretically feasible
 - Should solve Steinke et al. (2016) issues of charge loss
- Non-linear plasma lens:
 - Development at UiO (design)
 - Collaboration with DESY for MHD simulations

- UiO: experiments not requiring an accelerator facility (prototype development, electromagnetgenerated B-Field measurement)
- **CLEAR** (2024): first non-linear plasma lens characterisation
- > Other developments:
 - Mid term objective: **prove achromatic lensing effect** (1 lens only)
 - Long term objective: full achromatic staging (2 lenses)

Acknowledgments

University of Oslo accelerator group:

Erik Adli (head), Jiawei Cao, J. B. Ben Chen, Ole Gunnar Finnerud (present at AAC24), Daniel Kalvik, Carl A. Lindstrøm, Kyrre N. Sjøbæk, Pierre Drobniak

DESY team for hydrodynamic simulations: Maxence Thévenet, Mathis Mewes

SPARTA team:

Carl A. Lindstrøm (P.I.), Daniel Kalvik, Pierre Drobniak

Funding:

European Research Council (ERC) The Research Council of Norway

UNIVERSITY OF OSLO

