

Modeling, Growth, and Characterization of Advanced Photocathode Materials at Northern Illinois University

Oksana Chubenko Department of Physics, Northern Illinois University

AAC24 Advanced Accelerator Concepts Workshop

Jul 22, 2024

chubenko@niu.edu

Monte Carlo Modeling of Photoemission from Semiconductors

Monte Carlo Modeling of Photoemission from Semiconductors

Can be applied to both bulk and thin layers.

4

-tvpe AlGaAs

p-type NEA GaAs

Monte Carlo Modeling of Photoemission from Semiconductors

Jul 22, 2024

chubenko@niu.edu

Spin-polarized photoemission from p-type GaAs activated to Negative Electron Affinity (NEA): I – photoexcitation, II – transport, III – emission.

Spin-polarized Photoemission from GaAs

Chubenko et al. J. Appl. Phys. **130**, 063101 (2021)

AAC24 Advanced Accelerator Concepts Workshop	Jul 22, 2024	chubenko@niu.edu

- ✓ Effective/fast modeling of spin-polarized photoemission: C + MPI to run in parallel at HPC cluster.
- \checkmark Good agreement with available experimental data.
- ✓ Required model parameters from Density Functional Theory (DFT) calculations.

The developed Monte Carlo model establishes a paradigm for future studies of spin-polarized photoemission.

Temperature effects on spin-polarized photoemission from bulk GaAs

Callahan et al., Proceedings of IPAC24, https://doi.org/10.18429/JACoW-IPAC2024-WEPC65

- Polarization band engineering to achieve an effective NEA condition without the use of Cs at the surface of GaN photocathode structures.
- Monte Carlo + DFT to study spin-polarized photoemission from III-Nitride materials.

Marini et al. J. Appl. Phys. 124, 113101 (2018).

Direct bandgap	yes	yes	
Cs-based activation	yes	yes	
Surface quality	high	high	
p-doped	yes	yes	
Spin-orbit coupling	strong	moderate	
Cost	MBE, expensive	ALD, cheap	
Accessibility	limited	accessible	

Franklin et al., Proceedings of IPAC24, https://doi.org/10.18429/JACoW-IPAC2024-WEPC66 13

AC24 Advanced Accelerator Concepts workshop	AC24	Advance	d Accel	erator (Concep	ts Wor	kshop
---	------	---------	---------	----------	--------	--------	-------

Jul 22, 2024

chubenko@niu.edu

Growth and Characterization of Alkali Antimonide Photocathodes

Cesium-antimonide photocathodes

Cesium-antimonide photocathodes

Jul 22, 2024

chubenko@niu.edu

Cesium-antimonide films grown on lattice-matched single crystal strontium titanate (STO) substrates demonstrate roughness-induced MTE < 10 meV even at large applied fields.

Saha, Chubenko et al, Appl. Phys. Lett. 120, 194102 (2022).

AAC24 Advanced Accelerator Concepts Workshop

Surface roughness and work function variation can limit MTE!

Cesium-antimonide photocathodes

AAC24 Advanced Accelerator Concepts Workshop

Jul 22, 2024

chubenko@niu.edu

Disordered crystal structure can limit MTE!

RHEED images of an annealed SiC substrate and a 10 u.c. Cs₃Sb film.

First-to-date demonstration of epitaxial growth of cesium-antimonide films on lattice-matched single crystal SiC substrates.

Growth of alkali-antimonide films at NIU

Jul 22, 2024

chubenko@niu.edu

NIU photocathode growth system:

- Was previously used to grow Cs-Te at Fermilab.
- Uses old INFN-type photocathode plug.

Growth system updates

- Replace SAES strip Cs sources with long-lasting effusion cells (MBE Komponenten) with cesium molybdate pellets (SAES Getters)
- In situ/operando characterization with the RHEED system required for the epitaxial growth of cesium antimonide photocathodes

Growth of alkali-antimonide films at NIU

Jul 22, 2024

chubenko@niu.edu

Prototype of the INFN-style plug with substrate insertion capability

AAC24 Advanced Accelerator Concepts Workshop

Testing alkali-antimonide photocathodes in accelerators

AAC24 Advanced Accelerator Concepts Workshop

Jul 22, 2024

chubenko@niu.edu

Alkali-antimonide photocathodes (Cs-Sb, Na-K-Sb):

- Low MTE 🔽
- High QE 🛛 🗸
- Thin films \rightarrow prompt response time \checkmark
- Robustness + long operational lifetime under realistic photoinjector conditions

Testing alkali antimonide photocathodes at AWA Facility

AAC24 Advanced Accelerator Concepts Workshop

Jul 22, 2024

chubenko@niu.edu

Argonne Cathode Teststand (ACT):

- L-band 1.3 GHz single-cell photocathode RF gun
- emittance measurement capability
- includes field emission (FE) imaging system to locate emitters with a resolution of \sim 20 μ m
- currently suitable for testing air-stable materials only
- unique plug design

ACT updates:

- integrate NIU-compatible photocathode plug suitable for testing different photocathode substrates
- develop NIU-compatible load-lock and photocathode transfer systems for testing Cs-containing photocathodes
- update the pump system to achieve ~10⁻¹⁰ Torr
- possibility of adding the deflecting cavity for photocathode response time measurements

Summary AAC24 Advanced Accelerator Concepts Workshop Jul 22, 2024 chubenko@niu.edu

- A comprehensive R&D photocathode program is currently under development at NIU.
- Located close to two national labs (Argonne and FermiLab).
- Three PhD students are actively working on different aspects of photocathode R&D.

Jul 22, 2024

chubenko@niu.edu

Grad students:

John Callahan (NIU) Daniel Franklin (NIU) Tariqul Hasan (NIU) Joniel O Mendez-Nieves (joins NIU this Fall)

Collaborators:

Siddharth Karkare (ASU) Luca Cultrera (BNL) John Power (ANL) Scott Doran (ANL) Eric Wisniewski (ANL) Gongxiaohui Chen (ANL) Philippe Piot (ANL) Eric Montgomery (Euclid)

Thank you!