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Exit ramps can address the issue! = However, compactness is challenging
e Designing a 10 TeV pCoM collider is a complex task
e HEP community expects robust start-to-end designs before construction — expand beam size, preserving « Ramps become (too) long at high energy
e Modeling: first exploratory LPA elements, now operation in beamlines emittance (ifk L, 2 1): ¢/o, decreases! » Development of a(po)chromatic focusing optics required [3]
e Exploration & optimization workflows: params depend on previous stage [1] P. Antici et al., JAP (2012), [2] M. Migliorati et al., PRAB(2013) [3] C. Lindstrem et al., PRAB (2021)

Fast-turnaround optimization studies revealed that chromatic emittance growth during simplified
Inter-stage transport can be strongly decreased through tailored plasma downramps.
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e Plasma cutoff at right betatron phase —_— R = e Refine workflows for full accelerator chain and enable quick configuration changes
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