

Optimizing Plasma-Downramp Profiles and Beam Transport for Emittance Preservation in Multi-Stage Plasma Accelerators

M. Garten, C. Benedetti, A. Huebl, R. Lehe, R. T. Sandberg, O. Shapoval, and J.-L. Vay Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Office of Science

Simulations for Design of Next-Gen Colliders

• HEP community expects **robust start-to-end designs** before construction

• Exploration & optimization workflows: params depend on previous stage

• Modeling: first exploratory LPA elements, now operation in beamlines

Preservation of Beam Quality is Challenged by Chromatic Emittance Growth

Realistic inter-stage transport lengths complicate things! \rightarrow energy spread, matching, space charge effects

Emittance growth from chromaticity in drifts [1, 2]:

 $\langle \epsilon_0 \rangle^2 \sigma_{\gamma}$

• Designing a 10 TeV pCoM collider is a **complex task**

C.B. Schroeder et al., JINST (2023) C. Benedetti et al., arXiv:2203.08366 (2022) Leemans and Esarey, Physics Today (2009)

 $\Delta \epsilon$ energy spread

Exit ramps can address the issue!

 \rightarrow expand beam size, preserving emittance (if $k_{\Box}L_{d} \gtrsim 1$): ϵ_{0}/σ_{0} decreases!

[1] P. Antici et al., JAP (2012), [2] M. Migliorati et al., PRAB(2013)

- Ramps become (too) long at high energy
- Development of a(po)chromatic focusing optics required [3]

[3] C. Lindstrøm *et al.*, PRAB (2021)

Fast-turnaround optimization studies revealed that chromatic emittance growth during simplified inter-stage transport can be strongly decreased through tailored plasma downramps.

- Optimum ramp scale length appears to grow with beam energy
- Scale length can be shorter than predicted by adiabatic matching
- Sensitivity to scale length drops with lower emittance growth for higher energies
- Combination of low- and high-fidelity codes, and ML methods for surrogate models make BLAST suite a powerful toolbox for collider design studies

-20 -

— left max

0.5

0.0

-0.5

- Beam expansion faster than adiabatic matching
- Plasma cutoff at right betatron phase

 10^{-1} 10^{-3} 10^{-2} β (m)

• Matching beta-function to partially blown-out plasma accelerator cavity

1 GeV

10 GeV

100 GeV

1 TeV

----- 10 TeV

 10^{-3}

 -10^{-3}

	Speed				Fidelity	
Fast 。	Reduced physics				Full physics	Accurate 。
ه as	Reduced models		-		First principles	ه as
accurate as	1D-1V				3D-3V	fast as
possible	Low resolution				High resolution	possible
e.g., initial des	signs, optimization	& operations	e.g., stability proofs, exploration, ML training data			

Outlook
Optimize upramps and plasma lenses / apochromatic transport
Include beam-loading (100s of pC) and repeat studies

- Reproduce in **high-fidelity** (3D WarpX), and continue to train surrogate models
- Refine workflows for full accelerator chain and enable quick configuration changes

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Science, Office of High Energy Physics, General Accelerator R&D (GARD), under contract number DE-AC02-05CH11231. Supported by the CAMPA collaboration, a project of the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of High Energy Physics, Scientific Discovery through Advanced Computing (SciDAC) program, and the Exascale Computing Project (17-SC-20-SC). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award HEP-ERCAP0023719.

Contribution #164

