

Quasi-adiabatic plasma lens designs for the final focus of TeV electrons

Qianqian Su¹, Lance Hildebrand¹, Yujian Zhao¹, Weiming An², Fei Li³,

Thamine Dalichaouch¹, Warren Mori¹

¹ University of California, Los Angeles, US ² Beijing Normal University, Beijing, China ³ Tsinghua University, Beijing, China

Work at UCLA supported by DOE through DE-SC0010064, and by NSF through award 2108970

The e+e- linear collider design requires tightly focused beams at the interaction point

Luminosity
$$
L = f N^2 / (4\pi \sigma_x \sigma_y) \sim 10^{34} cm^{-2} s^{-1}
$$

Interaction point :

Collision rate f ~ 100 Hz, bunch population, N ~ 10^9 ~ nC , spot size $\sigma_x \sigma_y \sim (10 \ nm)^2$

Beamstrahlung (Can be reduced by using flat beams, TLC spot size $\sigma_x \sim 100nm$, $\sigma_y \sim nm$)

Traditional beam delivery systems

- Long construction distance \sim km
- Chromatic effects requires low energy spread beams
- Oide limit of minimum beam size

Avoided by adiabatic plasma lens But synchrotron radiation needs to be considered

A. Seryi, et. al. SLAC-PUB-13766, 2009 E. Adli, et. al., arXiv:1308.1145 [physics.acc-ph], 2013 T. Barklow et. al. Journal of Instrumentation, 18:09, 2023. *K. Oide, Physical Review Letters, 61:1713, 1988.*

P. Chen, et. al.. Physical Review Letters, 64:1231--1234, 1990.

C. B. Schroeder, et. al. . Physical Review Accelerators and Beams, 13, 101301 (2010)

Quasi-adiabatic plasma lens: spot size remains matched as it is adiabatically focused in a density ramp

Linear focusing force for fully blown out plasma $F_{\perp} = -\frac{1}{2}$ $\frac{1}{2}$ r $(m \omega_p^2)$ ~ plasma density $n_p(s)$ Particles transverse motion in a linear focusing system $x'' + k_{\beta}^2(s)x = 0$ $k_{\beta}(s) = \frac{\omega_p}{c\sqrt{2\gamma}}$ Courant–Snyder (twiss) parameters β and α $\beta = \frac{\langle x^2 \rangle}{\langle x^2 \rangle}, \alpha = -\frac{\langle xx' \rangle}{\langle xx' \rangle}$ ϵ : beam emittance $\frac{1}{2}\beta\beta'' - \frac{1}{4}\beta'^2 + k_\beta^2\beta^2 = 1$ $\alpha = -\frac{1}{2}\beta'$ **Adiabatic condition** Plasma density ramp $k'_{\beta}(s)$ $\frac{k_{\beta}(s)}{k_{\beta}(s)} \lesssim k_{\beta}(s) \Leftrightarrow \alpha \lesssim 1$ **Beam envolope Beam matched at the entrance of plasma** will stay matched ($\beta(s) = \frac{1}{k_0(s)}$) when **propagate in the plasma ramp Focused beam Beam**

R. Ariniello, et. al. Physical Review Accelerators and Beams, 22:04, 2019.. K. Floettmann, et. al. Physical Review Accelerators and Beams, 17:054402, 2014

Fields of matched electron beams pull ions inward leading to nonlinear and axial dependent, but higher focusing forces

Ion motion cannot be ignored when $\frac{n_b}{n}$ $\frac{n_b}{n_0} \gtrsim \frac{m_i}{m_e}$ $\frac{m_i}{m_e}$ = 1836 for hydrogen ions Beam density with linear collider parameter $n_b \gtrsim \frac{10^9}{100 \, nm \, m}$ $\frac{10^5}{100 \ nm \ nm \ um} \sim 10^{25} cm^{-3}$ Plasma frequency with beam density $\Omega_b = \sqrt{\frac{4\pi n_b Ze^2}{m_b}}$ $rac{v_b}{m_i}$ ~ fs^{-1} for hydrogen ions and linear collider parameters Ion motion occurred in the beam when $\frac{\Omega_b \sigma_z}{c} \gtrsim 1$

S. Lee, T. Katsouleas, AIP Conf. Proc. 472, 524–533, 1999 J. B. Rosenzweig, et. al. Physical Review Letters, 95, 195002, 2005 C. Benedetti, et. al. Physical Review Accelerators and Beams, 20:111301, 2017 W. An, et. al., Physical Review Letters, 118:244801, 2017, Y Zhao, et. al. Physical Review Accelerators and Beams 26 (12), 121301, 2023

 1.0

Quasi-adiabatic ramps have been shown to preserve the beam emittance in the presence of ion motion

 $1.00 -$

One stage of acceleration of 25 GeV trailing beam

Wide drive beam and $n_0 = 10^{17} cm^{-3}$

Plasma density ramp $\frac{n(z)}{n_0} = \left(1 + \frac{\alpha_{mi}(z-L)^2}{\beta_{mi}L}\right)^{-2}$

$$
\beta_m(z) = \sqrt{2\gamma}c/\omega_p(z), \qquad \alpha_m(z) = -\frac{1}{2}\beta_m'(z).
$$

$$
\frac{\Omega_b \sigma_z}{c} = 2.2577 \sqrt{\frac{ZN_b(10^9)\sigma_z(um)}{m_i(1836m_e)}} \left(\frac{n_p(10^{19}cm^{-3}) E(500 \text{ GeV})}{\epsilon_{Nx} (100nm)\epsilon_{Ny} (100nm)}\right)^{\frac{1}{4}}
$$

Y. Zhao, et. al. Physical Review Accelerators and Beams 26 (12), 121301, 2023

L. Hilderbrand, et. al. Submitted to Physical review letters

 (b)

Electrical & Computer Engineering Department

We investigated plasma lens for the electron arm according to possible linear collider parameters

UCLA

We can also use beams accelerated by conventional accelerator or other technology.

15 TeV colliders can use round beams design

We try to reach the target spot size by choosing the emittance and plasma lens parameter

T. Barklow et. al. Journal of Instrumentation, 18:09, 2023.

Advanced simulation tools opens the possibility to study ion motion in plasma >1000x speed up: QPAD and QuickPIC

Focused spot size ~ nm (Bubble radius ~ tens of μ **m** for plasma density 10^{17} ~ 10^{19} cm^{-3})

QPAD (Quasi-static code with azimuthal decomposition)

Adaptive mesh grid setting for beam propagation in a plasma ramp

Adiabatic plasma ramp for 15 TeV CM LC – QuickPIC with mesh refinement

Plasma density $n_0 = 5 \times 10^{19} cm^{-3}$ for normalization, $k_p^{-1} = \frac{c}{\omega}$ $\frac{c}{\omega}$ = 0.75 um,

Drive beam energy 250 GeV, trailing beam energy 7.5 TeV

Matched beam parameters calculated without considering ion motion : found to provide optimal CS parameters at the entrance

$$
\frac{n(z)}{n_0} = \frac{1}{\left(1 + \frac{\alpha_{mi} z^2}{\beta_{m0} L}\right)^2}
$$

In normalized unit Initial plasma density ratio n_i/n_0 = 2.02 × 10⁻⁵ Trailing beam initial α at the entrance $\alpha_{mi} = 3.0$, matched β at uniform density $\beta_{m0} = 5418$

$$
\beta = \tfrac{\langle x^2 \rangle}{\epsilon}, \alpha = -\tfrac{\langle x x' \rangle}{\epsilon}
$$

Drive beam parameters obtained from numerical integration

$$
\frac{1}{2}\beta\beta'' - \frac{1}{4}\beta'^2 + k_\beta^2\beta^2 = 1 \qquad \alpha = -\frac{1}{2}\beta'
$$

Intensely focused beam pull ions inwards and provide a higher focusing force

Drive beam parameter : Normalized emittance $\epsilon_x = \epsilon_y = 15$ *um*, $\sigma_{mz} = 0.75$ *um*, Charge 0.63 nC, **Energy 250 GeV Trailing beam parameter : Normalized emittance** $\epsilon_x = \epsilon_y = 100$ **nm, Initial spot size** $\sigma_{ix} = \sigma_{iy} = 78.5$ **nm, Bunch** length $L_z = 3.0 \, \text{um}$, **Energy 7.5 TeV**, Charge 0.82 nC, 1% energy spread

15 $1e6$ 0.020 Without ion motion 0.3 0.015 800 10 0.2 0.010 $-B_y$ (mc ω_p/e) $\frac{8}{3}$

Ion density(n_0) 5 0.005 0.1 $x(c/\omega_p)$ κ(c/ω_ρ) $n_b(n_0)$ 0.000 0.0 -0.005 -0.1 -5 ь× L4 $\mathcal{E} = 0.0$ -0.010 -0.2 200 $.4 \xi = -1.0$ -0.015 -10 -0.3 L4 $\xi = 1.0$ -0.020 ₃ -2 $^{-1}$ 0 $\mathbf{1}$ -0.004 -0.002 0.000 0.002 0.004 ξ (c/ ω _D) -12.5 -10.0 -7.5 -5.0 -2.5 0.0 $x(c/\omega_{D})$ $\xi(c/\omega_p)$

Plasma and beam profile at 28.5 cm, $n = 2 \times 10^{19}$ cm⁻³

0.08

Charge Density (nC / (um * cm)

0.04

0.06

 0.00

10

0.02

The trailing beam is focused down to nm scale

Trailing beam energy 7.5 TeV, Charge 0.82 nC, 1% energy At end of plasma lens : $n = 2 \times 10^{19} cm^{-3}$ spread at the end of the plasma lens

Initial spot size $\sigma_{ix} = \sigma_{iy} = 78.5 \text{ nm}$ focused down to **1.3 nm** Spot size without ion motion **5.9 nm**

Density (nC / um)

Charge

Adiabatic plasma ramp for 1TeV asymmetric beam – QuickPIC with mesh refinement

Maximum plasma density $n_0 = 1 \times 10^{19} cm^{-3}$, $k_p^{-1} = \frac{c}{\omega}$ $\frac{c}{\omega}$ = 1.68 um Matched beam parameters calculated without considering ion motion Drive beam energy same as trailing beam energy

$$
\frac{n(z)}{n_0} = \frac{1}{\left(1 + \frac{\alpha_{mi} z^2}{\beta_{m0} L}\right)^2}
$$

In normalized unit

Initial plasma density ratio $n_i/n_0 = 0.00058$ Initial α at the entrance $\alpha_{mi} = 1.0$ Matched β at uniform density $β_{m0} = 1978$

$$
\beta = \frac{\langle x^2 \rangle}{\epsilon}, \alpha = -\frac{\langle xx' \rangle}{\epsilon}
$$

Asymmetric witness beam with asymmetric driver provide asymmetry for plasma lens

Drive beam parameter **: Normalized emittance** $\epsilon_x = 158$ um, $\epsilon_y = 10$ um, $\sigma_{mz} = 1.68$ um, Energy 1TeV,

Charge 0.63 nC, **aspect ratio** $\sigma_x/\sigma_y = 3.9$

Trailing beam parameter : **Normalized emittance** $\epsilon_x = 12.6$ um, $\epsilon_y = 44$ nm, Bunch length $L_z = 4.2$ um, Energy 1TeV, Charge 0.58 nC, **aspect ratio** $\sigma_x/\sigma_y = 16.7$

Ion motion increases the focusing field 10-100 times

Drive beam parameter : Normalized emittance $\epsilon_x = 158$ *um*, $\epsilon_y = 10$ *um*, $\sigma_{mz} = 1.68$ *um*

Charge 0.63 nC, aspect ratio 3.9

Trailing beam parameter : Normalized emittance $\epsilon_x = 12.6$ um, $\epsilon_y = 44$ nm, Bunch length $L_z = 4.2$ um, Energy 1TeV, Charge 0.58 nC, aspect ratio 16.7

The ion motion provide extra asymmetry for the trailing beam

Trailing beam focused to : $\sigma_v = 83$ nm, $\sigma_x = 3.0$ nm

Matched spot size in y direction without ion motion : 8.7 nm , Aspect ratio increased from 16.7 to around 28

With ion motion

Three times smaller spot size in y direction

Aspect ratio doubled at the beginning of the beam

5 times higher luminosity

Achieved beam parameters using maximum plasma density $n_0 \sim 10^{19}$ cm⁻³

July 23, 2024 16

Summary

UCLA

- **Plasma lens including ion motion shows potential for the electron-arm final focus of a LC (PBA or conventional)**
	- Plasma lens with maximum density $n_0 = 2 \times 10^{19} cm^3$ can provide target spot size for a **15 TeV round beam example**
		- **Beams focused down to 1.3 nm**
		- **20 times higher luminosity with ion motion**
		- **Synchrotron radiation needs to be self-consistently included in the analysis**
	- **1-3 TeV asymmetric examples**
		- **5 times higher luminosity compared to without ion motion**
		- **Asymmetric drive beam improve the trailing beam aspect ratio**
		- **Aspect ratio of 20-30 was achieved in preliminary simulation**
		- **The examples can be improved with higher plasma density and lower emittance for the smaller spot size direction.**

Thanks for your attention!