
Plasma lens

> Exceptional focusing strength (kT/m) 

> Axisymmetric focusing in single device 

> Emittance degradation through wake excitation 

> Chromatic focus 

Two maxmimal integrated field strengths are 
examined: 
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Scaling of coupling length with energy
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> Strong in-plasma focusing forces:  
 Matching conditions requires strong focusing into plasma 

 Strongly divergent beam after acceleration 

→
→
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> A systematic first-principle comparison of focusing systems 

showcases the complexity of the optimisation. 

> ML is poised to take on the multi-dimensional optimisation. 

> The development of advanced apochromatic high-gradient 

focusing stages is key to achieve the tight focusing 

requirements in a compact manner.

Conclusion

Motivation: Reaching collider-relevant beam energies
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> Longer coupling stages implicate: 
> Lower k-values for small beta values 

> Larger absolute chromatic amplitude 

> Larger k-sensitivity of focus spot size 

> Smaller k-sensitivity of chromaticity
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> Reduced demand in kL 

> Enabeling 1:1 imaging in x and y 

> Reduced comatic amplitude

Object function: WxWy
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= 100 mmk: focusing strength 
L: quadrupole length 
L1: drift length

The scale of the inter-stage coupling is determined by: 
> Achievable gradient of focusing optics 

> Demand on chromatic focus correction

> Micron-sized wake:  
 Tight tolerances (synchronisation and alignement) 

 Non-negligible energy spread causing chromaticity
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> Plasma wakefields exhibit GV/m electromagnetic fields promising: 
> Compact accelerator stage 

> Excellent beam-quality: nm-level emittance, fs-level bunch duration,  charge 

> Ultimate limit of the acceleration process: driver depletion 

> Beam energies beyond ~10 GeV require driver replenishing 

> Inter-stage coupling must provide: 
> Incoupling of new wake-driving beam 

> Beam-quality-preserving transport of accelerated bunch 

> Metric for a compact design of future linear accelerator facilities:  

    Effective acceleration gradient including beam delivery systems
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Ĥ
45

I2
b

I2
A

(kpLb)
4

L2
c

Chromatic dependence of Twiss  β(δ), α(δ)
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