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Plasma Wakefield Based Colliders

Cost reduction is key - improvements in collider length, gradient and/or efficiency would all be wins

Four concepts for plasma wakefield based colliders
Main motivation is cost:

- High gradient (shorter is cheaper)

- Efficiency (heavy beam-loading)

Higher gradient generally means shorter wavelength,
transverse Wakefields scale faster

Efficiency through heavy beam-loading means high
beam currents, stronger coupling to undesirable
modes

Self consistency means we quantitatively understand
every component of a wakefield collider
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An accelerator in a collider

Trade-offs are key: we need ‘subsystem’ models that can be used for global optimization

* Keycomponents IEEEEEEEEEEEEEEEEEEEEEEEEEEEEENg
= RF gun Drive beam accelerator |
1. Drive beam generation . -
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2. Main (witness) beam generation ~7 """ bunch compressor

= Drive beam distribution =

Beam Delivery and IR
.... j

PWFA cells

3. Drive beam distribution and combination
with main beam

4. Wakefield accelerators

- Beam Delivery System

main beam
e- injector

« Machine Detector Interface main beam

et injector
» Detector

- Drive and main generation look fairly
straightforward, synergy with structure based  * Need ownership of models for instabilities
wakefields



Beam Break-Up and Transformer Ratio

Luminosity and efficiency are tied together, must connect wakefield and magnet position models

+ Beam Break-Up is an intra-beam effect in the main beam
only

+ Heavy beam loading is good for efficiency, but
makes it easier to excite undesired modes
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+ More energy spread, more energy gain tend to be better
for mitigating BBU

« For a given charge there is an optimum transformer ratio,
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Figure 3.3. Sequence of snapshots of a beam undergoing dipole beam breakup instability in a

linac. Values of kgs indicated are modulo 27. The dashed curves indicate the trajectory of the
bunch head.
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Physics of Collective Beam Instabilities in High Energy Accelerators, Chao, (1993)
Efficiency versus instability in plasma accelerators, Lebedev et al, PRAB (2017)
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Alignment : Magnets + Girders

All accelerator physics is very important to a wakefield collider

« The analogue to accelerator alignment is drive-main alignment

+ Analysis (without acceleration) shows sub-micrometer tolerances
RMS accelerator alignment errors

required
+ Errors in girder and magnet locations are absolute A GL cell
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-« FCC-ee work shows that sub 10 um rms misalignment of quads is yacc 52
e . BNS}/Z
possible in simulation
G o o o of G: Gradient
round motion is on the scale of 1-10 nm L.: Length of focusing cell (plasma)
Lramp Lo Lramp Sgns: Energy spread of beam
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Conclusions

There are many ways to assemble a wakefield based collider, a lot of options to explore!

+ Self consistency means we quantitatively understand every component of a wakefield collider

+ As physicists we typically ignore numerical constants and just examine scaling, for a collider design we do not have that
luxury

* For instruments like colliders a factor of 2 is an enormous difference in cost, we need to find those factors of 2
 Positron acceleration will require very careful attention

+ Next steps: Build models for drive beam distribution, drive+main combination, accelerator module itself

Magnets
Magnet Alignment

Energy Spread

1 AR

(Notice that nothing here is a plasma)



