AAC 2024

BREAKDOWN INSENSITIVE ACCELERATION REGIME IN A METAMATERIAL ACCELERATING STRUCTURE

DILLON MERENICH

B. Leung¹, G. Rijal¹, X, Lu^{1,2}, C. Whiteford², C. Jing², E. Wisniewski², G. Chen², J. Power², P. Piot², W. Liu²
1. Northern Illinois University, DeKalb, USA 60115
2. Argonne National Laboratory, Lemont, USA 60439

Northern Illinois University

ACKNOWLEDGMENTS

- AWA:
 - Charles Whiteford
 - Chunguang Jing
 - Eric Wisniewski
 - Gongxiaohui Chen
 - John Power
 - Philippe Piot
 - Wanming Liu

- NIU:
 - Brendan Leung
 - Gaurab Rijal
 - Xueying Lu

- ANL Central Machine Shop
 - Doug Carvelli
 - Jim Korienek
 - John Conway
 - Mark Rooney
 - William Toter

- DOE Office of Science, Office of High Energy Physics
 - NIU (ECA): DE-SC0021928
 - CAST Traineeship: DE-SC0020379
 - AWA: DE-AC02-06CH11357

Overview

- Background
 - Structure Wakefield Acceleration (SWFA)
 - Metamaterials (MTMs) for SWFA
- Structure Design
- Experimental Setup
- Experimental Results
 - RF Statistics and the breakdown insensitive acceleration regime (BIAR)
 - Dark Current Assessment
- Future Plans
- Conclusion

Structure Wakefield Acceleration (SWFA)

- Structure-based wakefield acceleration
 - Power is extracted from a **drive** bunch to accelerate a **witness** bunch
 - Two-beam acceleration vs collinear acceleration
- Short-pulse extracted \rightarrow Higher gradients
 - RF breakdown rate (BDR) ~ E^{30} tpulse⁵
 - Short (ns) RF pulses \rightarrow lower BDR

Metamaterials (MTMs) for SWFA

- Metamaterial (MTM)
 - Engineered material with sub-wavelength features that gives rise exotic EM properties
 - Example class: double negative MTMs: $\epsilon,\mu < 0$
- SWFA requirements:
 - High gradients/shunt impedance (recall our empirical scaling law)
 - Short fill times (high group velocity)
- MTMs with negative group velocities (double negative MTMs):
 - Mitigates group velocity-shunt impedance trade-off
 - Large parameter space → customizeable EM properties

MTM Accelerator Design

- Unit cell
 - Cell period = 0.04" (2mm) << RF wavelength (11.7GHz)
- Full structure
 - 6 unit cells with WR-90 couplers
 - Short input large bandwidth pulse

Unit cell and corresponding TM₀₁-like mode dispersion curve

Mechanical Design and Structure Fabrication

MTM plates electropolished

Argonne

High-power Experiment Setup

- No witness beam
- Diagnostics: Forward/Reflected RF signals, Faraday cup signal, and photodiode

Argonne

Experimental Results Histories and Sample RF

- More than 3x10⁵ shots
- RF transmission improved over conditioning period
- · Diagnostics: RF signal strong agreement with expected

Sample RF diagnostics and theoretical calculations

Experimental Results

The Breakdown Insensitive Acceleration Regime (BIAR)

• BIAR associated with lower gradients (events happen in secondary pulses)

Experimental Results RF Statistics

- Similar RF statistics to non breakdown event
- · BIAR dark current behavior differs from breakdown events

Faraday Cup Current (A)

Dark current for non-breakdown events

- Assumed Fowler-Nordheim emission mechanism
- Data binning required (shot to shot variation)
 - Fitted enhancement factor (FEF) ranging between 28 and 35 depending on number of bins
 - FEF agrees with associated emitter size → similar length scales to damages in post-run imaging)

Conclusions

- A high power test using a metamaterial accelerating structure in an SWFA scheme was conducted at Argonne Wakefield Accelerator
- The BIAR was observed where the corresponding RF statistics are similar to the desired non-breakdown case
- BIAR dark currents do not align with breakdown events
- Multipacting associated with lower gradients → could be cause of BIAR secondary pulse deformation
- Short pulse duration may be a contributing factor to BIAR process
 - accelerating gradient has increased rate of change \rightarrow less time for multipacting too fully develop to full breakdown event

Future Plans

Experimental Runs

- A future experimental run with more complete diagnostics may be useful for understanding BIAR
- Investigate the intended two-bream acceleration using a MTM power extractor to drive the accelerator
- Modify designs
- Explore modifications to metamaterial plates to improve figures of merit (group velocity, shunt impedance, etc.)

QUESTIONS?

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Northern Illinois University

NAC²⁴

Argonne

BACKUP

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Northern Illinois **GGGC**²⁴

BDRs

