Measurement of CSR-Affected Beams using Generative Phase Space Reconstruction*

Advanced Accelerator Concepts

Naperville, IL

July 23rd , 2024

J.P. Gonzalez-Aguilera

University of Chicago

jpga@uchicago.edu

*Gonzalez-Aguilera et. al., Proc. IPAC'24

Coherent Synchrotron Radiation (CSR)

- AAC, FEL applications need highly compressed beams longitudinally
- Dispersive lattices are used to compress the beams (e.g., chicanes)
- Coherent synchrotron radiation (CSR) is produced when bending beam trajectory

A. Edelen et al., IPAC 2022

CSR Degrades Beam Quality

 Short-range CSR wakefield induces nonlinear kick in E vs z

- Dipoles also introduce x, p_x correlations with E
- Result: rotation and centroid shift of x, p_x longitudinal slices, increasing the projected ε_x

6D Generative Phase Space Reconstruction

(1) Use **generative machine learning** to represent complex 6D beam distributions.

(2) Implement **differentiable** beam dynamics simulations to enable learning

6D Generative Phase Space Reconstruction

 Perform 6-dimensional phase space reconstruction of a beam distribution from 20 experimental measurements (no pre-training)

CSR at the Argonne Wakefield Accelerator

- Generate a beam influenced by CSR in double dogleg
- Measure phase space after 4th dipole with beam diagnostics

Simulated CSR Effects: E - z and $x - p_x$

GPSR Training Data

GPSR Results

- AWA double dogleg can produce significant CSR effects
- Simulations show 6D GPSR can resolve CSR effects in the
 - $\varepsilon_x = 25 \text{ mm mrad}, \sigma_{\delta} = 0.2\% \text{ case}$
 - Only 20 x-y beam profiles
 - -~10 min, 8 Gb GPU
- Experimental demonstration coming soon!

Our Team

THE UNIVERSITY OF CHICAGO

Young-Kee Kim J.P. Gonzalez-Aguilera

NATIONAL ACCELERATOR LABORATORY

Ryan Roussel

Wanming Liu

Eric Wisniewski

Alexander Ody

John Power

Philippe Piot

This work was supported by:

• NSF award PHY-1549132, the Center for Bright Beams

- NERSC
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

0.6 0.4 **Thanks!** $p_X/p (\times 10^3)$ 0.2 **Questions?** 0.0 -0.2 $\begin{array}{c} -4 \\ -2 \\ 0 \\ 2 \\ 4 \end{array}$ [mm]+ Gonzalez-Aguilera et. al., Proc. IPAC'24 -0.4-3 -2 -10 1 2 3

This work was supported by:

- NSF award PHY-1549132, the Center for Bright Beams
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Argor

z [mm]

Backup: AWA realistic parameters

> At the end of the drive linac section

Parameters	Short pulse case (0.3 ps)	Long pulse case (6.0 ps)
RMS beam size	0.45 mm (without quads)	0.3 mm (without quads)
RMS bunch length	0.4 mm	0.64 mm
RMS energy spread	0.43%	0.25%
Normalized emittance	3.6 mm mrad	2.3 mm mrad

Courtesy of Seongyeol Kim, 2022

Backup: Chirped Beam

- 1 nC
- Simulations from photocathode
- Space charge

