MicroBooNE: New Ideas for the Future

Andrew Furmanski Fermilab Users Meeting 28th June 2023

The MicroBooNE experiment

$2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

$2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

$2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

$2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

 $2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

 $2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

 $2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

 $2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

 $2012 \ 2013 \ 2014 \ 2015 \ 2016 \ 2017 \ 2018 \ 2019 \ 2020 \ 2021 \ 2022 \ 2023 \ 2024 \ \dots$

MicroBooNE physics goals

MicroBooNE physics goals

Detector R&D - past

- MicroBooNE demonstrated liquid argon TPC technology at scale:
 - Argon purity
 - Cold, low-noise electronics
 - Laser calibration system
- Overhaul of signal simulation/processing
- Developed automated reconstruction tools

Andrew Furmanski University of Minnesota After Noise Filtering 1-D Deconvolution

) JINST 13. P07007 (2018)

750 (a)

600

¥450

300

150

lime [3

2-D Deconvolution

(c) MicroBooNE

Detector R&D - present

- Unique assessment of detector response uncertatinties
- Demonstration of ns-timing to identify beam bunch structure
 - Implications for BSM searches
- R&D run demonstrated sensitivity to low-energy radioactivity contaminants
 - And that our filter removes them!

Andrew Furmanski University of Minnesota

2022 JINST 17 P11022

50 mm

214Po

 α (7.7 MeV)

 $T_{1/2} = 164 \ \mu s$

²¹⁴Bi β (Q = 3.3 MeV)

 $100 \, cr$

Detector R&D - future

- Argon is being vented from the cryostat
 - We are monitoring resistances as the LAr boils off
- After venting, we will find out what 8 years of cryogenic operation does to a LArTPC
- We are continuing to analyse the data from our R&D run
- Demonstration of TPC-based trigger, and more!

MiniBooNE/LSND – the past

- LSND indication of neutrino oscillations at $\Delta m^2 \sim 1 \text{ eV/km}$
- MiniBooNE excess of low-energy electron-like events
 - We call this the "low-energy excess" or LEE
 - One interpretation is also oscillations from eV-scale sterile neutrinos

Testing MiniBooNE's Excess

Events

 $NC \Delta \rightarrow N\gamma$

LEE Model (x_{MB}=3.18)

All Other Backgrounds

Total Unconstrained Background & Error

- Four electron neutrino channels
- Two photon channels
- No evidence for an excess!

Andrew Furmanski University of Minnesota NC1 π^0 Higher Resonances

← MicroBooNE 1γ1p Data (6.80×10²⁰ POT) ↓ Total Constrained Background & Error

Phys. Rev. Lett. 128, 111801 (2022)

NC1⁷⁰ DIS

Testing the oscillation hypothesis

- Considering a 2- flavour oscillation of $\nu_{\mu} \rightarrow \nu_{e}$
- Data rules out LSND allowed region
- But what if that's not the only thing happening?

Testing the oscillation hypothesis

- Profiling over all parameters, allowing for electron neutrino disappearance too
- Problem electron neutrino disappearance can perfectly cancel an appearance signature!

 10^{-3}

 $\sin^2 2\theta_{\mu e}$

 10^{-2}

 10^{-1}

MICROBOONE-NOTE-1116-PUB

 10^{2}

10

10-

 10^{-2}

 10^{-5}

 10^{-4}

 Δm^2_{41} (eV²)

Oscillations - future

Events

- Change the v_{μ}/v_{e} ratio in the beam!
- Or, use a different beam
- NuMI data will break this degeneracy – analysis in progress!

Neutrino interactions - past

Neutrino interactions - present

- Detailed tests of interaction models
- More exclusive final states
 - Proton counting
 - First ever two-proton differential cross sections!

Andrew Furmanski University of Minnesota Phys. Rev. Lett. 128, 151801 (2022)

Pred w/ constraint from E_{u}^{rec} and $\cos \theta_{u}^{rec}$

MicroBooNE 5.3×10^{19} POT

800

400

0 5

Entries 40

Data / Pred

- Data (FC)

 Pred no constraint γ²/ndf: 12.60/16

γ²/ndf: 10.28/16

Neutrino interactions - present

- Detailed tests of interaction models
- More exclusive final states
 - Proton counting
 - First ever two-proton differential cross sections!

Andrew Furmanski University of Minnesota Phys. Rev. Lett. 128, 151801 (2022)

Pred w/ constraint from E_{u}^{rec} and $\cos \theta_{u}^{rec}$

MicroBooNE 5.3×10^{19} POT

800

400

0 5

Entries 40

Data / Pred

- Data (FC)

 Pred no constraint γ²/ndf: 12.60/16

γ²/ndf: 10.28/16

Neutrino interactions - future

- Rare particle production Lambda, η
- Future analyses: harder final states
 - neutrons, de-excitation photons, and more
- More detailed tests of interaction model across multiple topologies and final states
 - 30+ ongoing analyses!

Beyond the Standard Model

- Searches for long lived neutral particles
 - Heavy Neutral Leptons
 - Higgs Portal Scalar
- Coming soon baryon number violation
 - Neutron-antineutron oscillation
- Future dark tridents, Millicharged particles, and much more!
 - Some of these models will address the MiniBooNE excess from other directions!

MICROBOONE-NOTE-1113-PUB

Summary

- MicroBooNE detector is being decommissioned after over 8 years of cold operation!
 - And 56 publications to date
- But we still have lots of new ideas for the future!
 - Learning more about LArTPC technology through decommissioning measurements
 - Extending oscillation sensitivity using two beams
 - Novel BSM searches
 - A wealth of cross section measurements in the works
- A huge thank you to Fermilab Accelerator Division for the beam, cryo and technical staff, and administrative staff – we couldn't do it without you!

Thank You!

Backup slides

TPC trigger

J.Phys.Conf.Ser. 2374 (2022) 1, 012163

