



### **Accelerator Complex Evolution (ACE) at Fermilab**

Nhan Tran with credit to ACE Science workshop committee and discussion leads

Fermilab Users Meeting 2023 June 30, 2023

## **Outline**

## Prologue

- Evolution to the Accelerator Complex Evolution
- ACE Science (Workshop)
- ACE overview and opportunities
- Physics vision and next steps



## The Fermilab Accelerator Complex Evolution (ACE)

### Lia's talk on Weds

ACE has two components

- Upgrades to the Main Injector and target station will allow DUNE to achieve world-leading results on an accelerated schedule
- A Booster replacement will
  - Provide a robust and **reliable** platform for the future of the Fermilab accelerator complex
  - Ensure high intensity for DUNE Phase II → CP Violation *measurement*
  - Enable the capability of the complex to serve precision experiments and searches for new physics with beams from 2-120 GeV
  - Create the capacity to adapt to new discoveries
  - Supply the high-intensity proton source necessary for future multi-TeV accelerator research



#### ACE Science Opportunities workshop

- Following on the 2019 booster science opportunities workshop
- Build on ACE concept and include: neutrinos, muons, dark sector, BSM, multi-TeV platform.

Vital that HEP Community drives this!

ACE Science Workshop June 14 - 15, Fermilab https://indico.fnal.gov/event/59663/

Leveraging PIP-II and ACE, the US is well positioned to host a world-leading energy frontier collider as the next major facility at Fermilab, conceived and executed as global endeavor.

## **Recent history**

#### TM-2754-AD-APC-PIP2-TD

#### An Upgrade Path for the Fermilab Accelerator Complex\*

R. Ainsworth, J. Dey, J. Eldred, R. Harnik, J. Jarvis, D.E. Johnson, I. Kourbanis,
D. Neuffer, E. Pozdeyev, M.J. Syphers,<sup>†</sup> A. Valishev, V.P. Yakovlev, and R. Zwaska Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA (Dated: May 19, 2021)

FERMILAB-FN-1145, LA-UR-22-21987

#### Physics Opportunities for the Fermilab Booster Replacement

John Arrington,<sup>1</sup> Joshua Barrow,<sup>2,3</sup> Brian Batell,<sup>4</sup> Robert Bernstein,<sup>5</sup> Nikita Blinov,<sup>6</sup> S.
J. Brice,<sup>5</sup> Ray Culbertson,<sup>5</sup> Patrick deNiverville,<sup>7</sup> Vito Di Benedetto,<sup>5</sup> Jeff Eldred,<sup>5</sup>
Angela Fava,<sup>5</sup> Laura Fields,<sup>8</sup> Alex Friedland,<sup>9</sup> Andrei Gaponenko,<sup>5</sup> Corrado Gatto,<sup>10,11</sup>
Stefania Gori,<sup>12</sup> Roni Harnik,<sup>5,\*</sup> Richard J. Hill,<sup>5,13</sup> Daniel M. Kaplan,<sup>14</sup> Kevin J.
Kelly,<sup>5,15</sup> Mandy Kiburg,<sup>5</sup> Tom Kobilarcik,<sup>5</sup> Gordan Krnjaic,<sup>5</sup> Gabriel Lee,<sup>16,17,18</sup> B.
R. Littlejohn,<sup>14</sup> W. C. Louis,<sup>7</sup> Pedro Machado,<sup>5</sup> Anna Mazzacane,<sup>5</sup> Petra Merkel,<sup>5</sup>
William M. Morse,<sup>19</sup> David Neuffer,<sup>5</sup> Evan Niner,<sup>5</sup> Zarko Pavlovic,<sup>5</sup> William Pellico,<sup>5</sup>
Ryan Plestid,<sup>5,13</sup> Maxim Pospelov,<sup>20</sup> Eric Prebys,<sup>21</sup> Yannis K. Semertzidis,<sup>22,23</sup> M. H.
Shaevitz,<sup>24</sup> P. Snopok,<sup>14</sup> M.J. Syphers,<sup>25</sup> Rex Tayloe,<sup>26</sup> R. T. Thornton,<sup>7</sup> Oleksandr
Tomalak,<sup>5,7,13</sup> M. Toups,<sup>5</sup> Nhan Tran,<sup>5</sup> Yu-Dai Tsai,<sup>5,27</sup> Richard Van de Water,<sup>7</sup>
Katsuya Yonehara,<sup>5</sup> Jacob Zettlemoyer,<sup>5</sup> Yi-Ming Zhong,<sup>28</sup> and Robert Zwaska<sup>5</sup>

https://arxiv.org/abs/2106.02133 https://arxiv.org/abs/2203.03925 + many supplementary white papers

#### Report from the Fermilab Proton Intensity Upgrade Central Design Group

Robert Ainsworth, Giorgio Apollinari, Tug T. Arkan, Sergey Belomestnykh, Pushpalatha C. Bhat, S.J. Brice, Brian Chase, Mary E. Convery, Steven J. Dixon, Jeff Eldred, Grigory Eremeev, Brenna Flaugher, Jonathan D. Jarvis, Sergo Jiindariani, David Johnson, Jonathan Lewis, Richard Marcum, Sergei Nagaitsev, David Neuffer, Donato Passarelli, Frederique Pellemoine, William A. Pellico, Sam Posen, Eduard Pozdeyev, Alexander Romanenko, Arun Saini, Kiyomi Seiya, Vladimir Shiltsev, Nikolay Solyak, James M. Steimel, Diktys Stratakis, Alexander A. Valishev, Mayling L. Wong-Squires, Slava Yakovlev, Katsuya Yonehara, Robert Zwaska

Fermi National Accelerator Laboratory

May 31, 2023

#### **Posted** on ACE Science Workshop agenda

**‡** Fermilab

# **Recent history**

- Muon collider interest has increased through Snowmass process
- PIU-CDG study determined faster path to > 2MW to DUNE before Booster Replacement
  - Led to the broader Accelerator Complex Evolution (ACE) plan includes the MI fast ramp upgrade + Booster Replacement
- ACE overview
  - Part 1, ACE-MIRT: Reduce Main Injector Ramp time + Target R&D to get to > 2 MW
  - Part 2, ACE-BR: Booster Replacement
    - Necessary for long-term facility reliability (Booster is 50 years old)
    - Deliver 2.4 MW to DUNE, enable world-leading accelerator physics program
      - Linac or RCS configurations for Booster Replacement



# **Recent-est History**

- In light of PIU-CDG findings and Snowmass
  - Step back and re-evaluate ACE Science program and design
  - Collate community input and understand
     physics thrust complementarity
- ACE Science Workshop (June 14-15)
  - <u>https://indico.fnal.gov/event/59663/</u>
  - First in a series of workshops to co-design physics case and technical design
  - Physics cases largely developed orthogonally, need to understand synergies





- Prologue
  - Evolution to the Accelerator Complex Evolution
  - ACE Science (Workshop)
- ACE overview and opportunities
- · Physics vision and next steps

Mostly through pictures (tables in backup)



## **DUNE** plan









| Scenario                              | Present | PIP-II |
|---------------------------------------|---------|--------|
| MI 120 GeV ramp time (s)              | 1.333   | 1.2    |
| Booster Intensity (10 <sup>12</sup> ) | 4.5     | 6.5    |
| Booster ramp rate (Hz)                | 15      | 20     |
| Number of batches                     | 12      | 12     |
| MI power at 120 GeV (MW)              | 0.865   | 1.25   |
| Booster cycles for 8 GeV              | 8       | 12     |
| Available 8 GeV power (kW)            | 29      | 83     |





| 0 |                   |                   |               | 5            |                         |          |          |   | -        | 10       |    |          |    | 1   | 15 |    |    |    | 2          | 20 |    |     |              |          | 25 |   |    |    | 3  | 0 |   |   |   | З | 35 |   |              |   | 4 | 40           |     |          |                   |          |          |   |          |   |   |          |          |          |          |              |              |              |   | Tir | ne           | (B      | 00 | ste      | er c             | cyc              | le              | s, 5      | 50 I       | ms)        |
|---|-------------------|-------------------|---------------|--------------|-------------------------|----------|----------|---|----------|----------|----|----------|----|-----|----|----|----|----|------------|----|----|-----|--------------|----------|----|---|----|----|----|---|---|---|---|---|----|---|--------------|---|---|--------------|-----|----------|-------------------|----------|----------|---|----------|---|---|----------|----------|----------|----------|--------------|--------------|--------------|---|-----|--------------|---------|----|----------|------------------|------------------|-----------------|-----------|------------|------------|
|   |                   |                   |               |              |                         |          |          |   |          |          |    |          |    |     |    |    |    |    |            |    |    |     |              |          |    |   |    |    |    |   |   |   |   |   |    |   |              |   |   |              |     |          |                   |          |          |   |          |   |   |          |          |          |          |              |              |              |   |     |              |         |    |          |                  |                  |                 |           |            | _          |
|   |                   |                   |               |              |                         |          |          |   |          |          |    |          |    |     |    |    |    |    |            |    |    |     |              |          |    |   |    |    |    |   |   |   |   |   |    |   |              |   |   |              |     |          |                   |          |          |   |          |   |   |          |          |          |          |              |              |              |   |     |              |         |    |          |                  |                  |                 | PIF       | P-         | I          |
|   | $\langle \rangle$ | $\langle \rangle$ | $\backslash/$ | $\mathbb{N}$ | $\overline{\mathbf{A}}$ | $\wedge$ | $\wedge$ | Λ | $\wedge$ | $\wedge$ | Λ  | $\wedge$ | Λ  | Λ   | Λ  | Λ  | Λ  | Λ  | Λ          | /  | /  | Λ   | $\mathbf{V}$ | $\wedge$ | Λ  | Λ | Λ  | Λ  | Λ  | Λ | Λ | Λ | / | M | 1  | V | $\mathbb{V}$ | V | V | $\mathbb{V}$ | ^\/ | $\wedge$ | $\langle \rangle$ | $\wedge$ | $\wedge$ | Λ | $\wedge$ | Λ | Λ | $\wedge$ | $\wedge$ | $\wedge$ | $\wedge$ | $\mathbb{N}$ | $\mathbb{V}$ | $\mathbb{V}$ | V | V   | $\backslash$ | Λ       | Λ  | Λ        | Λ                |                  | Bo              | oo:<br>ne | ste        | r<br>y     |
|   |                   |                   |               |              |                         |          |          |   |          |          |    |          |    |     |    |    |    |    |            |    |    |     |              |          |    |   |    |    |    |   |   |   |   |   |    |   |              |   |   |              |     |          |                   |          |          |   |          |   |   |          |          |          |          |              |              |              |   |     |              |         |    |          |                  |                  | To<br>pr        | 8<br>0g   | Ge<br>rar  | V<br>n     |
|   |                   |                   |               | "            | Fi                      | irs      | st"      | 1 | 2        | Bo       | 00 | st       | eı | r b | )U | nc | ch | es | s <u>c</u> | 90 | to | 5 8 | 3 (          | Ge       | eV | р | ro | gr | aı | m |   | ) |   |   |    |   |              |   |   |              |     |          |                   |          |          |   |          |   |   |          |          |          |          |              |              |              |   |     |              |         |    |          |                  |                  |                 |           |            |            |
| J |                   |                   |               |              |                         |          |          |   |          |          |    |          |    |     |    |    |    |    |            |    |    |     |              |          |    |   |    |    |    |   |   |   |   |   |    |   |              |   |   |              |     |          |                   |          |          |   |          |   |   |          |          |          |          |              |              |              |   |     |              |         | Re | c)       |                  | er               | In              | ter       |            | l <b>y</b> |
|   |                   |                   | 1             | 1            | 1                       |          | 1        |   | :        | 1        |    |          |    |     |    |    | :  | ;  | :          | ;  | :  | ;   | :            | :        | ;  | : | :  | :  | :  | : | : | : | ; | 1 | 1  | 1 | 1            | 1 | 1 | 1            |     |          |                   |          |          |   |          |   |   |          |          | 1        | 1        | 1            | 1            |              | 1 | 1   | :            | ::<br>【 |    | en<br>Fe | ier<br><b>21</b> | gy<br>r <b>r</b> | yir<br><b>n</b> | ter       | nsii<br>Ak | .y         |





## **Accelerator Timeline - Main Injector Ramp Time (e.g. 0.7s)**



# Accelerator Timeline - spigots from 0.8 - 2 GeV



## Accelerator Timeline - spigots from 0.8 - 2 GeV



## **DUNE plan**





# BR options: 800 MeV to 8 GeV

### **3 RCS options**



See backup for more details

### **3 Linac options**



\*\* Estimate cost/schedule/ risk of basic *elements* of the accelerator (e.g. PIP-II upgrade to 2 GeV, target station, etc) in a large spreadsheet



# Physics Spigots



### **During ACE-MIRT period:**

- significant beam available at 0.8 GeV,
- less so at 8 GeV (due to MI cycle time),
- 120 GeV slow extraction program could see more beam power

### **During ACE-BR period,**

- significant beam available at 0.8-2 GeV,
- Potential for much more beam for 8 GeV program,
- 120 GeV slow extraction program even more beam



# **Accelerator Timeline - ACE-BR era**



# E.g. Physics from 0.8-2 GeV

### **Dark Sector Beam Dumps**

See more, e.g. at "Physics Opportunities at Beam Dump Facility in PIP-II and Beyond" <u>https://indico.fnal.gov/event/59430/</u>





### **Advanced Muon Facility**

See more, e.g. at "Workshop on a future muon program at Fermilab" <u>https://indico.fnal.gov/event/57834/</u>



# Muon Collider Proton Driver: 8 GeV program

ACE-BR scenarios considered do not exactly map to Muon Collider requirements but not far off





- Prologue
  - Evolution to the Accelerator Complex Evolution
  - ACE Science (Workshop)
- ACE overview and opportunities
- Physics vision and next steps

Science potential of ACE is broad, touches on energy, neutrino, rare/precision, cosmic, theory frontiers (and beyond!)

Just a few highlights, visit workshop agenda for much more information



# At the 10 TeV energy frontier

### Ian Low, ACE workshop

#### A 10 TeV Muon Collider could:

- Study the microscopic nature of the Higgs boson as the most exotic state of matter in Nature.
- Testing unverified predictions of the SM.
- Explore the last vestiges of WIMP dark matter.
- Observe a new regime of quantum field theories.
- Strong synergies with the neutrino frontier.



 $\sim w^{\star}$ 

W





## **Dark sectors**

A powerful probe of open parameters space for Thermal Relic Freeze-out dark sectors from **MeV to TeV scale** 





Sub-GeV visible portals DarkQuest, DUNE



TeV scale WIMP DM Muon Collider



#### https://indico.fnal.gov/e/aces2023

## **Indirect searches**

### Searches with rare muon decays can probe new physics scales up to ~10<sup>5</sup> TeV!



### **‡** Fermilab

# **Neutrinos beyond DUNE**

### Future long baseline precision program

- Limitations of the super-beams:
  - $-\pi^+ \rightarrow \mu^+ \nu_{\mu}$ , charged-selected pions.
  - Dirty beam. Wrong-sign contamination, neutrinos from Kaons, muons lead to a beam  $\nu_e$  background.
  - Systematics will kick in by (or before) the end of the DUNE and Hyper-K runs.
  - Only initial-state  $\nu_{\mu}$ :  $\nu_{\mu} \rightarrow \nu_{e}$  and  $\nu_{\mu} \rightarrow \nu_{\tau}$ .

#### Need more studies on neutrino factories in post DUNE world

- $\mu^- \to e^- \nu_\mu \bar{\nu}_e$  and  $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$
- Muon energy and charge known very well  $\rightarrow$  neutrino energy spectra known very well and neutrino beams very clean!
- Detectors with charge-ID allow one to kill the beam-background.
- High-energy ν<sub>e</sub> and ν
  <sub>e</sub>-beams allow for ν<sub>e</sub> → ν<sub>μ</sub> and ν<sub>e</sub> → ν<sub>τ</sub> oscillation measurements! New oscillation channels provide priceless opportunity for more observables.

### Future short baseline program

| Catanan                         | Madal                                          | Cimentum                                                                                                                                                                           |      | Anomalie  | es      |         | Deferreres                              |
|---------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|---------|---------|-----------------------------------------|
| Category                        | Iviodei                                        | Signature                                                                                                                                                                          | LSND | MiniBooNE | Reactor | Gallium | References                              |
| Flavor                          | 3+N oscillations                               | oscillations                                                                                                                                                                       | 1    | 1         | 1       | 1       | Reviews and<br>global<br>fits [103–106] |
| Conversion:<br>Transitions      | 3+N w/ invisible<br>sterile decay              | oscillations w/ $\nu_4$<br>invisible decay                                                                                                                                         | 1    | 1         | 1       | 1       | [46, 47]                                |
|                                 | 3+N w/ sterile decay                           | $\nu_4 \rightarrow \phi \nu_e$                                                                                                                                                     | 1    | 1         | 1       | 1       | [44, 45, 48-50]                         |
| Flavor                          | 3+N w/ anomalous<br>matter effects             | $ u_{\mu} \rightarrow \nu_{e} \text{ via} $ matter effects                                                                                                                         | 1    | 1         | ×       | ×       | [38–42]                                 |
| Conversion:<br>Matter Effects   | 3+N w/ quasi-sterile<br>neutrinos              | $ u_{\mu} \rightarrow \nu_{e} \text{ w}/ $ resonant $\nu_{s}$ matter effects                                                                                                       | 1    | 1         | 1       | 1       | [43]                                    |
| Flavor                          | lepton-flavor-violating $\mu$ decays           | $\mu^+ \rightarrow e^+ \nu_{\alpha} \bar{\nu}_e$                                                                                                                                   | 1    | ×         | ×       | ×       | [51–53]                                 |
| Conversion:<br>Flavor Violation | neutrino-flavor-<br>changing<br>bremsstrahlung | $ u_{\mu}A \rightarrow e\phi A$                                                                                                                                                    | 1    | 1         | ×       | ×       | [54]                                    |
| Dark Sectory                    | transition magnetic mom., heavy $\nu$ decay    | $N \rightarrow \nu \gamma$                                                                                                                                                         | ×    | 1         | ×       | ×       | [75]                                    |
| Decays in Flight                | dark sector heavy<br>neutrino decay            | $ \begin{array}{c} N \rightarrow \nu(X \rightarrow \\ e^+e^-) \text{ or } \\ N \rightarrow \nu(X \rightarrow \gamma \gamma) \end{array} $                                          | ×    | 1         | ×       | ×       | [73]                                    |
| Dark Sector:<br>Neutrino        | neutrino-induced<br>up-scattering              | $     \begin{array}{c}             \nu A 	o N A, \\             N 	o              \nu e^+ e^- \text{ or } \\             N 	o              \nu \gamma \gamma         \end{array} $ | 1    | 1         | ×       | ×       | [63–72]                                 |
| Scattering                      | neutrino dipole<br>up-scattering               | $\nu A \to NA, \\ N \to \nu \gamma$                                                                                                                                                | 1    | 1         | ×       | ×       | [55–62]                                 |
| Dark Sector:                    | dark particle-induced<br>up-scattering         | $\gamma$ or $e^+e^-$                                                                                                                                                               | ×    | 1         | ×       | ×       | [74]                                    |
| Scattering                      | dark particle-induced<br>inverse Primakoff     | γ                                                                                                                                                                                  | 1    | 1         | ×       | ×       | [74]                                    |

 $\checkmark$  - the model can naturally explain the anomaly,  $\checkmark$  - the model can partially explain the anomaly,  $\varkappa$  - the model cannot explain the anomaly.

- Requires additional potential modes of running such as anti-neutrino mode (Karagiorgi)
- Other ideas for short-baseline program too such as KDAR for mono-energetic neutrinos (KPIPE, Spitz)

**7** Fermilab

# **ACE Science Workshop and next steps**

- Discussion sessions workshop included an afternoon dedicated to discussions among folks from different subfields
  - Identified many areas of priority and future study
- Examples of ACE design/R&D topics emerging from workshop:
  - **ACE-MIRT**: 8 GeV program beam power sharing across the CLFV, MuC R&D, and shortbaseline neutrino program
  - ACE-BR 0.8 → 2 GeV: are accumulator ring pulsed beams compatible for dark sector and CLFV programs at both 0.8 and 2 GeV? Pros/cons of earlier 2 GeV Linac?
  - ACE-BR 8 GeV: is there a preferred design configuration to enable a Muon Collider proton driver? Is accumulator ring for MI compatible with MuC-PD



# **Looking forward**

- Fermilab Accelerator Complex Evolution (ACE):
  - ACE-MIRT: upgrade Main Injector and Target R&D to provide > 2 MW to DUNE
  - ACE-BR: deliver full 2.4 MW to DUNE, enable next generation accelerator particle physics program, provide reliable beam to all its users
- Science potential is broad and significant with 4 physics thrusts
  - Muon Collider, CLFV, Dark Sectors, Neutrinos beyond DUNE
  - Short remarks session highlighted additional exciting ideas
- ACE Workshop series initiated to
  - Gather community input and understand complementarity towards a conceptual design that enables a world-leading physics program



# **Supplemental material**



# **ACE Science Workshop**

- <u>https://indico.fnal.gov/event/59663/</u>
- First in a series of workshops to co-design physics case and technical design
  - Invite as much community input as possible many community speakers
  - Involve early career folks as much as possible
- Organizers experts across neutrino, collider, CLFV, dark sectors, accelerators





S. Gori (Co-chair)

K. DiPetrillo B. Echenard



#### J. Eldred







P. Machado



M. Toups



# **ACE Science Workshop**

• Discussion leads

### **CLFV - Muon Collider**





B. Bernstein

D. Stratakis S. Jindariani

### **Neutrino - Dark Sectors**



J. Zettlemoyer A. Sousa

![](_page_31_Picture_10.jpeg)

B. Dutta

![](_page_31_Picture_12.jpeg)

**Dark Sectors - Muon Collider** 

![](_page_31_Picture_13.jpeg)

C. Cesarotti

### **CLFV - Dark Sectors**

![](_page_31_Picture_16.jpeg)

M. Solt

![](_page_31_Picture_18.jpeg)

Y. Kahn

J. Zupan

### **CLFV - Neutrinos**

![](_page_31_Picture_21.jpeg)

A. Thapa I. Bigaran R. Plestid

### **Muon Collider - Neutrinos**

![](_page_31_Picture_25.jpeg)

Z. Tabrizi

![](_page_31_Picture_27.jpeg)

C. Herwig

## **The Fermilab Accelerator Complex**

![](_page_32_Figure_1.jpeg)

**‡** Fermilab

|        |         |        |                    |                     |                    |                     |            |          |            |            |      | Offic  | e of the Cl        | RO January 2 | 2022         |
|--------|---------|--------|--------------------|---------------------|--------------------|---------------------|------------|----------|------------|------------|------|--------|--------------------|--------------|--------------|
|        |         |        |                    |                     |                    |                     | DRAFT      | LONG-R   | ANGE PL    | AN         | 1    |        |                    |              | _            |
|        |         | FY18   | FY19               | FY20                | FY21               | FY22                | FY23       | FY24     | FY25       | FY26       | FY27 | FY28   | FY 29              | FY30         |              |
| LBNF / | SANFORD |        |                    |                     | DUNE               | DUNE                | DUNE       | DUNE     | DUNE       | DUNE       | DUNE | DUNE   | DUNE               | DUNE         |              |
| PIP II | FNAL    |        |                    |                     | LBNF               | LBNF                | LBNF       | LBNF     | LBNF       | LBNF       | LBNF | LBNF   | LBN F              | LBNF         |              |
| NuMI   | м       | IINERv | IINERv             | DPEI                | OPEN               | 2x2                 | 2x 2       | 2x2      | 2x2        | 2x2        |      |        | 5                  | ee Note 4    |              |
|        |         | NOvA   | NOvA               | NOv/                | NOvA               | NOvA                | NOvA       | NOvA     | NOvA       | NOvA       |      |        |                    |              | $\mathbf{v}$ |
|        |         | ιBooN  | ιBooN              | Bool                | OPEN               | OPEN                | OPEN       | OPEN     | OPEN       | OPEN       |      |        | OPEN               | I OPEN       | v            |
| BNB    | В       | CARU:  | CARU:              | <mark>ARL</mark>    | CARUS              | CARU:               | CARU:      | CARU:    | CARU       | ICARUS     |      |        | OPEI               |              |              |
|        |         | SBND   | <b>SBND</b>        | <mark>BNI</mark>    | SBND               | SBND                | SBND       | SBND     | SBND       | SBND       | SHI  |        | OPEI               |              |              |
| Muon   | Complex | g-2    | g-2                | g-2                 | g-2                | g-2                 | g-2        |          |            |            |      | 120111 |                    | $\sim$       | l            |
| Widon  | complex | Mu2e   | Mu2e               | <mark>/lu2</mark>   | Mu2e               | Mu2e                | Mu2e       | Mu2e     | Mu2e       | Mu2e       |      |        | N 42               | e Mu2e       | μ            |
|        | MT      | FTBF   | FTBF               | FTBF                | FTBF               | FTBF                | FTBF       | FTBF     | FTBF       | FTBI       |      |        | F BI               | FTBF         |              |
| SY 120 | MC      | FTBF   | FTBF               | FTBF                | FTBF               | FTBF                | FTBF       | FTBF     | FTBF       | FTBF       |      |        | F BI               | FTBF         | n            |
|        | NM4     | OPEN   | <mark>SpinQ</mark> | i <mark>pin(</mark> | <mark>SpinQ</mark> | <mark>Spin</mark> Q | SpinQ      | SpinQ    | OPEN       | DPEI       | 1    |        | C EI               |              | μ            |
| LINAC  | MTA     |        |                    |                     | ITA                | ITA                 | ITA        | ITA      | ITA        | ITA        |      |        |                    |              |              |
|        |         | FY18   | FY19               | FY20                | FY21               | FY22                | FY23       | FY24     | FY25       | FY26       | FY27 | FY28   | F <mark>\</mark> 9 | FY30         |              |
|        |         | Cor    | struction          | n / commi           | issioning          | R                   | un         | Sub      | ject to fu | rther revi | €N   | S      | hutdowi            | า            |              |
|        |         | C C    | apability          | ended               | $\square$          | Capab               | oility una | /ailable |            |            |      |        |                    |              |              |
| NOTES  |         |        |                    |                     |                    |                     |            |          |            |            |      |        |                    |              |              |

![](_page_33_Picture_2.jpeg)

![](_page_34_Picture_0.jpeg)

# Main Injector ramp time

|                                       |         | PII    | P-II Booster Intens | iity  |
|---------------------------------------|---------|--------|---------------------|-------|
| Scenario                              | Present | PIP-II | Α                   | В     |
| MI 120 GeV ramp time (s)              | 1.333   | 1.2    | 0.9                 | 0.7   |
| Booster intensity (10 <sup>12</sup> ) | 4.5     |        | 6.5                 |       |
| Booster ramp rate (Hz)                | 15      |        | 20                  |       |
| Number of batches                     | 12      |        | 12                  |       |
| MI power at 120 GeV (MW)              | 0.865   | 1.25   | 1.666               | 2.142 |
| Booster cycles for 8 GeV              | 8       | 12     | 6                   | 2     |
| Available 8 GeV power (kW)            | 29      | 83     | 56                  | 24    |

## **Booster Replacement options w.r.t. DUNE**

|                       |         |        | PIP-II Booster |       | Веу   | ond PIP-II Boo | ster  |                    |
|-----------------------|---------|--------|----------------|-------|-------|----------------|-------|--------------------|
| Scenario              | Present | PIP-II | Α              | В     | С     | D              | E     | units              |
| MI 120 GeV ramp rate  | 1.333   | 1.2    | 0.9            | 0.7   | 1.2   | 0.9            | 0.7   | S                  |
| Booster intensity     | 4.5     |        | 6.5            |       |       | 10             |       | 10 <sup>12</sup> p |
| Booster ramp rate     | 15      |        | 20             |       |       | 20             |       | Hz                 |
| Number of batches     | 12      |        | 12             |       | 12    | 12             | 9     |                    |
| MI power              | 0.865   | 1.25   | 1.666          | 2.142 | 1.922 | 2.563          | 2.472 | MW                 |
| Cycles for 8 GeV      | 6       | 12     | 6              | 2     | 12    | 6              | 5     |                    |
| Available 8 GeV power | 29      | 83     | 56             | 24    | 128   | 85             | 92    | kW                 |
|                       |         |        |                |       |       |                |       |                    |

n.b. a list of some of many potential scenarios!

![](_page_35_Picture_3.jpeg)

## Improving reliability of the complex

- Maximize beam power
  - Minimize beam loss
- Maximize uptime during running periods
  - High reliability (replace aging equipment)
  - Ability to rapidly repair equipment that breaks
- Maximize length of running periods each year
  - Minimize duration of annual shutdown for maintenance
- ACE will
  - Invest in reliability, availability and stability
  - Reduce shutdown duration, improve work planning

![](_page_36_Figure_12.jpeg)

Fiscal Year 22 Integrated Beam to NuMI — Design — Base

Overall FY22 efficiency 41%, DUNE/PIP-II goal 57%

### Capability, Capacity, Reliability

Fermilab

## **Example (non-comprehensive) list of physics**

|                                                                                                                  |                                |                                              | F                                                  | Uses existing                                                                                                                                                 |                   |          |
|------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|
| Experiment                                                                                                       | type                           | Energy [GeV]                                 | Power [kW]                                         | Time Structure                                                                                                                                                | or new beamline?  | Spigot   |
| Proton Storage Ring: EDM and Axion Searches                                                                      | Precision tests<br>Dark Matter | 0.232                                        | 1e11 polarized protons per fill                    | Fill the ring every 1000s                                                                                                                                     | new               | SOB      |
| Physics with Muonium                                                                                             | Precision tests                | 0.8                                          | 1e(13+/-1) POT per second                          | cw                                                                                                                                                            | new               | S0B      |
| REDTOP Run I                                                                                                     | Precision tests                | 1.8 - 2.2                                    | 0.03-0.05                                          | slow extraction                                                                                                                                               | Muon Campus       | S0E      |
| REDTOP Run II                                                                                                    | Precision tests                | 0.8 - 0.92                                   | 200                                                | CW,                                                                                                                                                           | new               | S0A, S0B |
| REDTOP Run III                                                                                                   | Precision tests                | 1.7                                          | >1,000                                             | CW,                                                                                                                                                           | new               | S1       |
| Ultra-cold Neutron Source for Fundamental Physics<br>Experiments, Including Neutron-Anti-Neutron<br>Oscillations | Precision tests                | 0.8-2                                        | 1,000                                              | quasi-continuous                                                                                                                                              | new               | SOA      |
| CLFV with Muon Decays                                                                                            | CLFV                           | Not critical 0.8 to a few<br>GeV             | 100 or more                                        | continous beam on the timescale of the muon lifetime i.e. proton pulses separated<br>by a microsecond or less. The more continuous the better                 | new               | SOB      |
| Mu2e II                                                                                                          | CLFV                           | 1 to 3                                       | 100                                                | pulse width 10s of ns or better separated by 200 to 2000 ns. Flexible time structure<br>and minimal pulse-to-pulse variation                                  | new               | S0A, S1  |
| Fixed Target Searches for new physics with O(1 GeV)<br>Proton Beam Dump                                          | Dark Sector,<br>Neutrino       | 0.8 to 1.5 GeV                               | 100 or more                                        | <o(1 <o(30="" for="" for<br="" measurements,="" micro="" neutrino="" ns)="" pulse="" s)="" width="">dark matter searches, 10^{-5} or better duty factor</o(1> | new               | S0C, S2  |
| PRISM-like Charged Lepton Flavor Violation                                                                       | CLFV                           | 1-3 GeV                                      | up to 2 MW                                         | 15ns pulses at a rep rate of about 1 kHz                                                                                                                      | new               | S0C, S2  |
| Proton Irradiation Facility                                                                                      | R&D                            | Energy is not very<br>important              | 1e18 protons in a few hours                        | Pulsed beam (duty factor not specified)                                                                                                                       | new               | SOB      |
| SBN                                                                                                              | Neutrino                       | 8                                            | 32                                                 | 20Hz                                                                                                                                                          | BNB               | S0D & S3 |
| Mu2e                                                                                                             | CLFV                           | 8                                            | 8                                                  | <10^{-10} extinction                                                                                                                                          | Muon Campus       | SOE      |
| Fixed Target Searches for new physics with O(10 GeV) Proton Beam Dump                                            | Dark Sector,<br>Neutrino       | 8                                            | up to 115                                          | Beam spills less than a few microsec with separation between spills greater<br>than 50 microsec                                                               | BNB               | S0D & S3 |
| Muon beam dump                                                                                                   | Dark Sector                    | 8 (producing 3 GeV muons)                    | 3e14 muons in total on target for<br>the whole run | cw                                                                                                                                                            | Muon Campus       | SOE      |
| Muon Collider R&D                                                                                                | R&D                            | 8 - 16GeV                                    | 4e13 to 1.2e14 protons per bunch                   | 5 - 20 Hz rep rate and bunch length 1-3 ns                                                                                                                    | new               | S3       |
| Muon Missing Momentum                                                                                            | Dark Sector                    | few 10s of GeV                               | 10^{10} muons per<br>experimental<br>runtime       | Pulsed beam (duty factor not specified)                                                                                                                       | new               | SOF      |
| High Energy Proton Fixed Target                                                                                  | Dark Sector,<br>Neutrino       | O(100 GeV)                                   | 1e12 POT/s therefore ~20 kW                        | CW via resonant extraction. "IF we could up the duty factor that woul dbe even<br>better"(?)                                                                  | Switchyard or new | SOF      |
| Test-Beam Facility                                                                                               | R&D                            | 120, lower energies would also be beneficial | 10 to 100 kHz on the<br>testing<br>apparatus       | Pulsed beam (duty factor not specified)                                                                                                                       | Switchyard or new | SOF      |
| Tau Neutrinos                                                                                                    | Neutrino                       | 120                                          | 1200 or higher                                     | MI time structure                                                                                                                                             | LBNF              | LBNF     |

# **Booster Replacement configurations**

### **RCS Configurations:**

**C1a)** 10 Hz metallic vac. chamber (~2GeV-8GeV): lower power at low energies, less physics opportunities, but could be made to be upgradabl

**C1b)** 20 Hz with ceramic vac. chamber (larger magnets) (~2 GeV-8 GeV), ~2 GeV Accumulation Ring (fixed energy, ideally separate from RCS tunnel)

**C1c)** 20 Hz with ceramic vac. chamber, high current linac (~2 GeV-8 GeV), no accumulation ring, need ~8mA current in PIP-II to quadruple the number of particles per injection compared to PIP-II

### SRF Linac Configurations:

**C2a)** Basic: Slight increase in PIP-II current, demonstrated XFEL RF

- Meets LBNF/DUNE requirements without any major R&D on RF.
- Small amount of power for 8 GeV program
- Uses the recycler (options C2b & C2c don't)

**C2b)** High Duty factor RF source - Slight increase in PIP-II current, significant RF upgrade

• Needs longer pulses, higher rep rate, and significantly more power for 8 GeV program

**C2c)** Higher Current PIP-II - Significant upgrade (2.7mA to 5mA) , some RF R&D

 Combination of options 2 and 3 could provide MW-scale beam power at 8 GeV

![](_page_38_Picture_14.jpeg)