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Quantum Information Science

2

Growing field of science and technology, combining
physics, mathematics, computer science, and engineering

Goal: understand and apply fundamental laws of quantum
physics — superposition, entanglement — to acquire,
transmit, and process information

QIS opportunities are attracting interest of scientists and

technologists and promoting unprecedented interactions
across traditional disciplinary boundaries
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Challenges of building quantum computers

* Requires qubit that can be manipulated without being
confused with other possible states of the system

« Maintain the quantum coherence of superposition long
enough to perform gate operations
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Partnerships across academia, industry & national labs

The DOE centers bring together multidisciplinary collaborations of 1,200 experts, including 600 students
and postdocs, across 80 academic, industry and national science institutions in 21 states and DC.

Through institutional partnerships,
the centers unite unique capabilities,

expertise and facilities.

» Answering fundamental open questions
in QIS

* Leveraging DOE user facilities for
advanced materials analysis and device
fabrication

* Training a new and diverse quantum
workforce

* Technology transfer — rapid cycle from
discovery to commercialization

* Accelerating scaling up and production

Qeveloping national standards /
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A DOE National Quantum Information Science Research Center, led by Fermilab
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Mission: Attacking QIS Cross-Cutting Challenges
4 \

SQMS Mission
“bring together the power of national labs, industry and academia to
achieve transformational advances in the QIS major cross-cutting
challenge of understanding and eliminating the decoherence
mechanisms in superconducting 2D and 3D devices, with the goal of
enabling construction and deployment of superior quantum systems
for computing and sensing."
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SQMS Goals: Science & Technology Innovation Chain

Materials High-coherence tems New platforms for
devices gration qguantum computing & sensing advantage

, a1 \ .
Developing a full Demonstrating Preserving device Deploying quantum
understanding of devices with high performance computing and
sources of systematically through the sensing facilities of
decoherence via a and consistently process of innovative
systematic, higher integrating into architectures and
fundamental science  coherence at more complex improved
approach different SQMS systems performance

partners

SQMS bridges the gap between ideas and large-scale realizations
via the unique center-wide, multidisciplinary coordinated approaches
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SQMS facilities: Fleet of new quantum testbeds
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Growing an Ecosystem a Diverse Quantum Workforce
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SQMS theorists and experimentalist ‘co-design’ to target decoherence
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SQMS National Qubit Nanofabrlcatlon askforce |

* SQMS coordinated study/process flow
across FNAL-UChicago, NIST,
Rigetti, Northwestern foundries to
address material losses

* Demonstrate reproducibility of
improved qubit coherence
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Milestone: Advanced coherence in encapsulated qubits

Qubit

arxiv:2304.13257
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Bal et al.,
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Milestone: Advanced coherence in encansulated aubits
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Significance of the results

World-wide landscape of 2D qubit coherences

Best Freq. Primary .
Group Substrate . Year |arXiv Ref.

T1(us) |[(GHz) material S Ql‘ 1 S T .
L 503 3.8-4.7 |Sapphire |Ta, dryetch 2022 |2105.09890 BeSt 1
(China) : ’ ’ :
IBM 340 ~4 Silicon Nb, dry etch  |2022 |[2106.11488 e Nb/Si—> 451 us

Houck 360 3.1-55 |Sapphire Ta, wet etch 2021 |2003.00024

IBM 234 |3.808 |Silicon  |Aldryetch 2021 |2103.09163
Schuster [126  [4.749  [Sapphire |Nb, Fletch  |2021 |2008.12231 «= Nb/sapphire > 198 us
IBM ~5 siicon | Nb 2021 |2101.07746
Rigetti  [133  [3.8-42 |Siicon  |Nb 2019 |1901.08042

SQMS 2D qubits are now at the forefront of the national and world-wide efforts
2& Fermilab
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Near-term Goals: 2D Qubit Materials Roadmap

I10ps I100us I1ms
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Year
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2& Fermilab
15 6/30/23 Akshay Murthy — SQMS Center



World record coherence 3D cavities in quantum regime

A. Romanenko et al, Phys. Rev. Applied 13, 034032, 2020
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Foundational Result upon which the SQMS center was built
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SQMS 3D SRF approach

Novel QPU architectures

* Long coherence allows going from qubit to
“gudit” approach (use d energy levels instead
of traditional 2)

ONE nine cell SRF cavity + ONE transmon =
SQMS 100+ qubits processor

Scalability

* > 100 qubits with just few input/output
lines

Science

e Directly probing the quantum to classical
transition : ”Schrodinger cat” states of record large
scales

* New physics (dark photon and axion) searches
with orders of magnitude improved sensitivity

* Physics simulations enabled by the all-to-all
qubit connectivity

17 6/30/23 Akshay Murthy — SQMS Center
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Milestone: Incorporated Transmon into SRF Cavity

TE3RI003 photon splitting

R qubit

Achieved photon
counting

4.3075 4.3080 4.3085 4.3090 4.3095
Qubit Frequency (GHz)

2= Fermilab
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Milestone: Incorporated Transmon into SRF Cavity

\ _Wigner tomography_

( Achieved long-lived
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Near-Term Goals: Design Multiqubit Architecture

Crosstalk issues

-

Transmon

CPU

Manipulator

~

Faster scaling: dV¥ > 2N

All-to-all coupling

Coupler

Storage

J
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Quantum Sensing for Fundamental Physics

* Quantum sensing: the use of quantum properties of light or matter to enhance
sensitivity of measurements.

« Sensing effort is driven by applying our SRF cavities and quantum devices
towards physics goals:
WA Probing Dark sectors:

New light particles: Dark photons and axions.
Either as the dark matter, or as “just” new particle.

A multi-search goal. Our most engaging science goal.

Precision tests:
Tests of the standard model (electron g-2, Euler-Heisenberg)
Tests of quantum mechanics

Gravitational waves:

Expanding the frequency for GW detection beyond LIGO/VIRGO

2& Fermilab
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SQMS theorists & experimentalist ‘co-design’ to develop new experiments
SRF + QIS capabilities enable new particle searches of unprecedented sensitivity and precision
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PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team
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Search for Dark Photons with Superconducting Radio Frequency

”
[ Cavities
A. Romanenko, R. Harnik, A. Grassellino, R. Pilipenko, Y. Pischalnikov, Z. Liu, O. S. Melnychuk, B. Giaccone, O.

s

Pronitchev, T. Khabiboulline, D. Frolov, S. Posen, S. Belomestnykh, A. Berlin, and A. Hook
Phys. Rev. Lett. 130, 261801 — Published 26 June 2023
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Dark SRF: "Light shining through wall” Experiment

102> SM SC wall
photons\ — " T

N/ € AV
/M
N/ NS

Emitter ¢ Necessary to match vity,

in the acc| cavity frequencies! regime
regime, hignreia

High Q,: enhances probability
of detecting power excess
due to dark photons

High Q,: increases
number of photons
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6.2 MV/m (= 0.6 J stored energy)

Receiver PSD (dBm)

Dark SRF: phase 1 — results

Thermal run vs Search run |
Search run conducted at 10°
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Romanenko et al., Phys. Rev. Lett. 130, 261801 (2023) e .
3¢ Fermilab
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6.2 MV/m (= 0.6 J stored

Receiver PSD (dBm)
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Dark SRF: phase 1 — results

Thermal run vs Search run
Search run conducted at
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Goals for Phase 2:
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1.

2.
\\ stability over time /

Achieve deeper
exclusion through
DR measurements
Improve frequency

1077

Romanenko et al., Phys. Rev. Lett. 130, 261801 (2023)
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Summary & Looking Ahead
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Impact at a glance, first 2.5 years

2 8 o > 2 O O External interns trained
SQMS Institutions (SQMS schools & internships;

1 3 1 New hires >2 1 O Companies engaged

'I 4 Funded 'I ’I 5
students & postdocs publications & preprints

Through robust partnerships across the
U.S. and abroad as well as extensive
investments in quantum infrastructure,
the SQMS center has delivered exciting
progress across the science + technology
innovation chain:

Leading edge coherence times in 2D
superconducting qubits

* Next steps: Targeted removal of
additional sources of decoherence

Demonstration of long-lived quantum
states in cavity-qubit system

* Next steps: Design and deployment of
multiqubit cavity/qubit architectures

Exploring new areas of dark photon
parameter space

* Next steps: Experimental improvements
to achiever deeper exclusion
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Appendix
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Dark SRF: phase 1 — measurement protocol

1. Excite emitter to desired field
and match its frequency to
receiver

3. Verify frequency matching
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