A Measurement of the Ambient Radon Rate and MeV-Scale Calorimetry in the MicroBooNE LArTPC

Will Foreman (Illinois Institute of Technology) representing the MicroBooNE Collaboration

-MeV-Scale Blip Reconstruction

Signal Topology and Analysis Method

- R&D doping data used to validate the simulation at the MeV-scale by reconstructing BG-subtracted energy spectra.
- β_{Ri} is plane-matched; spectrum sculpted by thresholding effects at E \leq 0.5 MeV.
- α_{Po} signal reconstructed only in collection plane (lower thresh)
 - Uncertainties in α charge-yield and quenching in LAr dominate systematic uncertainty
- MC efficiency for measuring BiPo rate: $\varepsilon_{nom} = (6 \pm 3)\%$

$(\delta \epsilon / \epsilon_{nom})$
Uncertainty
$\pm 43\%$
+26%, -17%
$\pm 15\%$
$\pm 1.9\%$
+52%, -49%

Ambient Radon Rate Results

- ${}^{214}\text{Bi} \rightarrow {}^{214}\text{Po}$ ('BiPo') decay produces distinct 'two-blip' topology due to short Po lifetime of 164µs.
- ΔT 'decay time' distribution background -subtracted & fit to exponential function.
- Function integrated to extract BiPo rate.

