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Outline

Brief intro to CMS trigger and data acquisition system


Role of software and computing in CMS


Status of Current CMS software computing


Computing challenges at the High-Luminosity LHC (Run 4) starting in 2029


Collider operation conditions, physics needs and changing computing hardware 
landscape


R&D Highlights 


Connection to other science domains and summary
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CMS computing and current status

Computing is crucial to CMS physics results


LHC Run 3 data taking is on-going, 2 times luminosity 
compared to Run 2


Offline distributed high throughput computing infrastructure


1 Tier-1 center at Fermilab. 8 Tier-2 sites in the US


Successfully using HPCs via HEPCloud


~1 B events produced in 2023. 5% of CMS total


Continue to onboard HPC sites: IACS at Stony Brook Ookami 
(First ARM HPC for CMS)


GPU running at the HLT in Run 3


Will come back to GPUs (and similar) later

CMS running cores on HPC sites (2022/01- Now)



Computing challenges in CMS at the HL-LHC

Data volume: 10 X more integrated luminosity


Data complexity: 10 X Detector channels (O(100M)-
>O(1B))


Trigger rate increases by 10x (to ~10kHz)


Physics needs 


Advanced sophisticated algorithms


Alternative readout schemes: B-parking (already in Run 
3)/L1-scouting


Enhanced MC stats needed for precision measurements


Increased needs in storage, processing power, user 
analysis support



Changing hardware landscape

Proactively adapting to new hardware trends: adopted multi-threaded computing 

Crucial to the success of CMS computing


Accelerated heterogeneous compute: Opportunities and challenges 

GPU running at the HLT for CMS Run 3 data-taking.


Highlight R&D activities towards HL-LHC, projects led by USCMS/FNAL.
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Technological challenges
• Good news: transistor count of 

processors continues to increase
• Bad news: clock speed of 

processors flatlined 
- Single-thread performance as well
• OK news: additional transistors 

used for increased cores
• Available computing power 

increasingly in multiple cores
- e.g., in GPUs 
• Software may need rewrites to take 

advantage
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K. Rupp: https://github.com/karlrupp/microprocessor-trend-data 

End of Denard scaling



Efficient reconstruction with increased parallelism: mkFit

Track reconstruction is a large part of 
the CMS reconstruction CPU budget


Increasingly so at higher pileup of HL-LHC 
CMS uses a Kalman Filter algorithm for 
track reconstruction
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CMS software evolution: tracking
• Track reconstruction is a large part of the CMS 

reconstruction CPU budget
- Increasingly so at higher pileup of HL-LHC
- CMS uses a Kalman Filter algorithm for track reconstruction
• mkFit: Vectorization of this algorithm 
- Increases parallelization of algorithm and uses vector units in 

modern CPUs
- Track building up to 6x faster compared to standard 

algorithm
• Algorithm now deployed with standard CMS 

software for Run 3
- Future development will include optimization for GPUs and 

other architectures
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Setting the stage 
1. Tracking is crucial
2. Tracking is time-consuming
3. Tracking times goes up 

dramatically with increased pileup
• Problem of combinatorics as 

occupancy increases

November 2020A. Reinsvold Hall   |   Particle Physics Seminar 19

Figure 1. CPU time per event
versus instantaneous luminosity,
for both full reconstruction and
the dominant tracking portion.
Simulated data with pile-up of
25 primary interactions per
event (PU25) corresponds to the
data taken during 2012, while
pile-up of 140 (PU140)
corresponds to the low end of
estimates for the HL-LHC era.

as Intels Xeon Phi and NVIDIA general-purpose graphics processing units (GPGPUs). In this
investigation we have followed a staged approach, starting with Intel Xeon and Xeon Phi Knights
Corner (KNC) architectures, an idealized detector geometry, and a series of simpler “warm-up”
exercises such as track fitting. This simplified problem domain was used to develop our tools,
techniques, and understanding of the issues scaling track finding to many cores. The warm-up
exercises let us develop useful components while also allowing the physicists to become familiar
with the computational tools and techniques, while the computational experts learned about the
problem domain. Armed with the results of those initial investigations, we are now addressing
more realistic detector geometries and event content, as well as adding new platforms. This
paper gives an overview of our progress to date and assesses the e↵ectiveness of our staged
approach.

2. Kalman Filter Tracking

Our targets for parallel processing are track reconstruction and fitting algorithms based on the
Kalman Filter [3] (KF). KF-based tracking algorithms are widely used to incorporate estimates
of multiple scattering directly into the trajectory of the particle. Other algorithms, such as
Hough Transforms and Cellular Automata [4][5], are more naturally parallelized. However,
these are not the main algorithms in use at the LHC today. The LHC experiments have an
extensive understanding of the physics performance of KF algorithms; they have proven to be
robust and perform well in the di�cult experimental environment of the LHC.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides
the initial estimate of the track parameters based on a few hits in the innermost regions of the
detector; seeding is currently out of scope for our project. Track building projects the track
candidate outwards to collect additional hits, using the KF to estimate which hits represent the
most likely continuation of the track candidate. Track building is the most time consuming step,
as it requires branching to explore multiple candidate tracks per seed after finding compatible
hits on a given layer. When a complete track has been reconstructed, a final fit using the KF is
performed to provide the best estimate of the track’s parameters.

To take full advantage of parallel architectures, we need to exploit two types of parallelism:
vectorization and parallelization. Vector operations perform a single instruction on multiple data
(SIMD) at the same time, in lockstep. In tracking, branching to explore multiple candidates per

Increases parallelization of algorithm and uses vector units in modern CPUs

Track building up to 6x faster compared to standard algorithm

Algorithm now deployed with standard CMS software for Run 3, further 
development includes optimization for GPUs and other heterogeneous 
computing.

https://iris-hep.org/projects/mkfit.html



Heterogenous computing: software portability

Available computing resources (including at HPCs) increasingly non-CPU (e.g. 
GPUs), each flavor of GPU/accelerator may require difference software 

e.g CUDA only works on NVIDIA GPUs.

Portability solutions allow offloading to different GPUs with the same code 
base

Compiler pragma-based approach/Libraries/Language extension

CMS investigated code portability solutions, Alpaka was chosen

New features/compiler supports/new backends

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

The p2r/p2z program

• Track reconstruction is one of the most computational intensive task in  
collider experiments such as the LHC at CERN

• p2r & p2z are a standalone mini-app. to perform core math of parallelized track 
reconstruction
- Build tracks in radial direction from detector hits (propagation +Kalman Update)
• Different propagation matrix in R / Z direction

- Lightweight kernel extracted from a more realistic application  
(mkFit, vectorized CPU track fitting)

• Together forms the backbone of track fitting kernels
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mkFit: https://arxiv.org/abs/2006.00071
p2r: https://github.com/cerati/p2r-tests
p2z:https://github.com/cerati/p2z-tests

Portability
• Code portability: Write your code once, runs on different hardwares

• Direct GPU programming often requires vendor-specific programming models 
e.g. CUDA only works on NVIDIA GPUs

• Portability solutions allow offloading to different GPUs with the same code base
- Compiler pragma-based approach/Libraries/Language extension
- Still rapidly evolving 
• New features/compiler supports/new backends

• HEP-CCE investigates different portability solutions for HEP experiments’ use-cases

1

Hardware

Software

Taken from: 
HEP-CCE

Portability talk at CHEP 2023

Steps of the mkFit core math of 
parallelized track reconstruction tested 
on various hardware software 
combinations.

https://indico.jlab.org/event/459/contributions/11844/


Heterogenous resources ‘as-a-service’: SONIC

FPGA-accelerated machine learning inference as a service for particle physics computing 9
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Fig. 7: An illustration of FPGA-accelerated ML cloud
resources integrated into the experimental physics com-
puting model as a service.

gRPC interface protocols are used to communicate with
the FPGA hardware, and the software access for fast
inference is unchanged. To benchmark this scenario, we
run our application on a virtual machine (VM) in the
cloud datacenter. Results comparing both these scenar-
ios with other hardware from the literature are pre-
sented in Section 5.

CPU
FPGA

Heterogeneous  
“Edge” Resource

gRPC
 protocol

Experimental 
software

Fig. 8: An illustration of FPGA-accelerated ML edge
resources integrated into the experimental physics com-
puting model as a service.

4.2 Particle physics computing model with services

For our demonstration study, we use the CMS exper-
iment software framework, CMSSW [45]. This software
uses Intel Thread Building Blocks [46] for task-based
multithreading. A typical module, such as those de-
picted in Fig. 1, has a produce function that obtains
data from an event, operates on it, and then outputs
derived data. This pattern assumes that all of the op-
erations occur on the same machine.

Our goal is to utilize the Brainwave hardware as a
service to perform inference of a large ML model such as
ResNet-50. Within CMSSW, a hook to the gRPC system is
established using a special feature called ExternalWork.
Optimal use of both CPU and heterogeneous computing
resources requires that requests be transmitted asyn-

chronously, freeing up a CPU thread to do other work
rather than forcing it to wait until a request is com-
plete. The ExternalWork pattern accomplishes this by
splitting the simpler pattern described above into two
steps. The first step, the acquire function, obtains data
from an event, launches an asynchronous call to a het-
erogeneous resource, and then returns. Once the call
is complete, a callback function is executed to place
the corresponding produce function for the module back
into the task queue. This is depicted in Fig. 9.

Fig. 9: A diagram of the ExternalWork feature in
CMSSW, showing the communication between the soft-
ware and external processors such as FPGAs.

In this case, the event data provided to the service is
a TensorFlow tensor with the appropriate size (224 ⇥
224 ⇥ 3) for inference with ResNet-50. A list of the
classification results is returned back to the module,
which employs ExternalWork. For simplicity, we refer
to the full chain of inference as a service within our
experimental software stack as “Services for Optimized
Network Inference on Coprocessors” or SONIC [47].

5 Computing performance and results

5.1 Brainwave performance

We benchmark the performance of the SONIC package
within CMSSW, measuring the total end-to-end latency of
an inference request using Brainwave. In a simple test,
we create an image from a jet (as described in Sec. 3)
from a simulated CMS dataset. We take reconstructed
particle candidates and combine them as pixels in a 2D
grayscale image tensor input to the ResNet-50 model
(as in Sec. 3.2).

We perform two latency tests: remote and on-
premises or on-prem. The remote test communicates
with the Brainwave system as a cloud service, as illus-
trated in Fig. 7. For this test, we execute our exper-
imental software, CMSSW, on the local Fermilab CPU
cluster (Intel Xeon 2.6 GHz) in Illinois, US, and com-
municate via gRPC with the service located at the Azure
East 2 Datacenter in Virginia, US. The on-prem tests
are executed at the same datacenter as the Brainwave

SONIC workflow in CMS production system

Acceleration ‘as-a-service’


NVIDIA Triton: ML inference server


Flexible CPU to GPU ratio


Maximize acceleration with heterogenous resources


Flexible fallback solutions with homogenous client software


Server handles heterogeneous hardware types, acceleration kernels 
(CUDA & alpaka).


Recent result presented at CHEP 2023.

‘Services for Optimized Network Inference on Co-processors’

https://indico.jlab.org/event/459/contributions/11816/


Analysis Software
Pythonic scientific computing ecosystem


Seamless interface with data science and ML tools


Columnar analysis (Coffea)


Leverage many many cores!


Investing in facility support at CMS sites (next slide).
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Analysis computing: Software
• Final step before results: analysis
- Reduced data formats help with demands
• Columnar analysis (Coffea)
- Greater flexibility and reduced time-to-insight
- Utilizes industry-standard Python-based tools
- Widespread adoption in CMS (>40 analyses)
• Adoption outside of CMS as well (e.g. ATLAS)
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Figure 1. Schematic of the event-loop (left) and columnar (right) data processing paradigms.

3 The coffea framework

The co↵ea framework is a python package that is indexed and installable 1 via standard python
packaging infrastructure, which provides several recipes and utilities to aid in development
of a HEP analysis within the columnar analysis paradigm. The package has developed or-
ganically to support our initial goal of implementing CMS data analyses within the scientific
python ecosystem. Here, we define “analysis” as the process of selecting events of interest
based on the high-level input variables or functions thereof, extracted from ROOT files or
similar column-oriented serialization formats, transforming numeric quantities, and comput-
ing summary statistics or low-volume tabulated data for use with statistical inference tools.
As this is the first full attempt at using scientific python libraries for CMS analyses, cer-
tain missing extensions which normally would be provided by ROOT libraries or by CMS
experiment-specific libraries had to be ported to a columnar paradigm. Examples include:

• multidimensional histogram objects that are serializable and mergeable, with support for
both categorical and numeric axes, that are fillable by arrays;

• certain experiment-specific corrections that are applied to simulated data, typically as a
piecewise function of some set of event parameters;

• utilities to reduce boilerplate necessary to construct the awkward arrays that represent the
events SoA object; and

• wrappers to enable use of novel scale-out mechanisms, as discussed further in Section 5.

As many of these extensions are performance-critical, we make full use of the vectorized
array programming primitives provided by NumPy and SciPy. We also utilize Numba [10],
which just-in-time compiles a subset of python and NumPy code into machine code, for
operations where no e�cient composition of existing array programming primitives could
be found. In general, any operation performed along the critical dimension—namely, per
event—is not performed sequentially within the python interpreter but by vectorized machine
code on the arrays forming the high-level SoA objects.

1pip install coffea, other options documented at https://co↵eateam.github.io/co↵ea/installation.html
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Analysis computing: Software
• Final step before results: analysis
- Reduced data formats help with demands
• Columnar analysis (Coffea)
- Greater flexibility and reduced time-to-insight
- Utilizes industry-standard Python-based tools
- Widespread adoption in CMS (>40 analyses)
• Adoption outside of CMS as well (e.g. ATLAS)
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Analysis Facilities

Analysis computing presently run on 
facilities designed for reconstruction 


Investing in analysis facilities at 
various USCMS sites 


Build infrastructure support for 
columnar analysis with modern 
softwares 


Traditional style workflows can also 
run on these facilities, or possible 
with new languages, e.g Julia


Quick analysis turn around time 
demonstrated: ~1 hour for a Run 2 
analysis demonstrated (instead of a 
day or more) Example: Analysis facility prototype at Purdue



Storage R&D

Object data formats provide novel 
data management capabilities


Compared to current tier-based 
file model

Reduce disk storage requirements, 
obviate the need to define data tiers


Developing a prototype object store 
service


Using Ceph S3 protocol

In collaboration with FNAL CSAID 
storage group

I/O scales better than ROOT files

Tier-based scheme
MiniAOD Data product KB per event

v1 v2

packed+pruned genParticles 5.7 5.7

slimmedElectrons 1.3 1.3

Others 48.7 48.7

Total 55.7 55.7

Object store scheme
MiniAOD Data product KB per event

v1 v2

packed+pruned genParticles 5.7 -

slimmedElectrons 1.3 -

Others 48.7 -

Updated slimmedElectrons - 1.3

Total 55.7 1.3

Talk at CHEP 2023

http://www.apple.com


Big data challenges in CMS and beyond

Computing challenges present in current 
and next generation HEP, astrophysics 
experiments and beyond.


White paper: "Applications of Deep 
Learning to physics workflows  "


CMS members leading developments in 
general solutions, tools, computing 
paradigms.


Shared resources, computing 
infrastructure, network challenges

Figure 4. Throughput and CPU core hours per event for highlighted workflows across disciplines.
The size of the circles represents typical event sizes, and their colors represent latency requirements
(per event) for the workflows.
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Summary

Upcoming High-Luminosity LHC run present many physics opportunities


Enhanced statistics with 10 times larger dataset, new ideas in looking for BSM 
deviations


Computing challenges at the LHC/High-Luminosity LHC (Run 4) starting in 2029


Collider operation conditions, physics needs


Changing computing hardware landscape


Various R&D activities 


Big data science era. Shared challenges, tools and solutions that enable new 
computing paradigms and opportunities


