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Outline

Brief intro to CMS trigger and data acquisition system

Role of software and computing in CMS
Status of Current CMS software computing
Computing challenges at the High-Luminosity LHC (Run 4) starting in 2029

Collider operation conditions, physics needs and changing computing hardware
landscape

R&D Highlights

Connection to other science domains and summary



CMS data collection

CMS Experiment

40MHz collision rate

~1B detector channels FPGA filter stack
~Us latency

10s Gb/s

~5 kHz
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~100ns latency F xabyte-scale

datasels

On-prem CPU/GPU

filter farm
~100 ms latency



CMS data collection

CMS Experiment

40MHz collision rate

~1B detector channels FPGA filter stack
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CMS computing and current status

Computing is crucial to CMS physics results | |
CMS running cores on HPC sites (2022/01- Now)

LHC Run 3 data taking is on-going, 2 times luminosity
compared to Run 2 T3_US_NERSC -

== [3_US_TACC
Offline distributed high throughput computing infrastructure T

. . . . . T3_US_PSC
1 Tier-1 center at Fermilab. 8 Tier-2 sites in the US

T3_US_SDSC
Successfully using HPCs via HEPCloud
~1 B events produced in 2023. 5% of CMS total

Continue to onboard HPC sites: IACS at Stony Brook Ookami
(First ARM HPC for CMS)

GPU running at the HLT in Run 3

Will come back to GPUs (and similar) later



Computing challenges in CMS at the HL-LHC

Data volume: 10 X more integrated luminosity

Data complexity: 10 X Detector channels (O(100M)-
>0(1B))

Trigger rate increases by 10x (to ~10kHz)
Physics needs

Advanced sophisticated algorithms

Alternative readout schemes: Run

3)/L1-scouting

B-parking (already Iin

—nhanced MC stats needed for precision measurements

Increased needs in storage, processing power, user
analysis support
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Changing hardware landscape

50 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten =7 N

New plot and data collected for 2010-2021 by K. Rupp

Proactively adapting to new hardware trends: adopted multi-threaded computing
Crucial to the success of CMS computing

Accelerated heterogeneous compute: Opportunities and challenges
GPU running at the HLT for CMS Run 3 data-taking.

Highlight R&D activities towards HL-LHC, projects led by USCMS/FNAL.



Track reconstruction is a large part of CMS Public
the CMS reconstruction CPU budget other: 29

Increasingly so at higher pileup of HL-LHC
CMS uses a Kalman Filter algorithm for

Efficient reconstruction with increased parallelism: mkFit

track reconstruction

Average real time (ms)

CMS tracking, first iteration

";'_*_"-"']XCMSSW

https://iris-hep.org/projects/mkfit.html

é? CMS Simulation, ys = 13 TeV, tt + PU, BX=25ns

Total CPU HL-LHC (2031/No R&D Improvements) fractions § 60— Full Reco Track Reco B
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Increases parallelization of algorithm and uses vector units in modern CPUs

Track bullding up to 6x faster compared to standard a

gorithm

Algorithm now deployed with standard CMS software -

‘or Run 3, further

development includes optimization for GPUs and other heterogeneous

computing.



Heterogenous computing: software portability

Available computing resources (including at HPCs) increasingly non-CPU (e.g.
GPUs), each flavor of GPU/accelerator may require difference software

e.g CUDA only works on NVIDIA GPUSs.

Detector measurement
Updated track state

Portability solutions allow offloading to different GPUs with the same code

updated state

base

Compiler pragma-based approach/ /

CMS investigated code portability solutions, Alpaka was chosen

New features/compiler supports/new backends

Software

CUDA | Kokkos

SYCL HIP ‘

after N _— xNN=xN'1N+KN°(mN-HN°xN'1N)

odé—.

Nth measurement ——— MN

=Fn-1°XN"1n-1

N

propagationto N —/——

updated state N-1
after N-1 X

N-1
r S

OpenMP | alpaka
NZ :;E)JA - J":,t::l/g':pp hipcc LL\,;l\;;,:gmy .
AMD — Portability talk at CHEP 2023
Hardware | epu il hpec Lm

Intel GPU

x86 CPU

FPGA

oneAPI|
intel/livm

oneAPI|
intel/livm
computecpp

CHIP-SPV:
early prototype

via HIP-CPU
Runtime

via Xilinx
Runtime

Intel OneAPI
compiler

oneapi::dpl

prototype

nvc++
LLVM, CCE,
GCC, XL

prototype
compilers protytype via
(OpenArc, Intel, SYCL
etc.)

Steps of the mkFit core math of
parallelized track reconstruction tested
on various hardware software
combinations.


https://indico.jlab.org/event/459/contributions/11844/

Heterogenous resources ‘as-a-service’: SONIC

‘Services for Optimized Network Inference on Co-processors’

Dat ter (CPU f Sites with directly connected GPUs
atacenter ( arm) \ Directed to directly connected GPU GPU nodes excluded from SONIC server

N
EmC

....................................................
.....................................................

Heterogeneous

local host as SONIC server with GPU acceleration
Resource

\ J

Experimental

| Software / |
I ~

CMS SONIC workflows

5 Network input _ Sites with CPU only nodes
CMS, local host as SONIC server without GPU
Prediction [ \ CMS global pool Directed to sites without load acceleration
B AN ] J balanced SONIC service
N
\
Directed to Purdue Tier 2 data / \
Acceleration ‘as_a_service, center where SONIC service SONIC GPU servers managed by Kubernetes

available via Kubernetes Purdue Tier 2 data center

Results
- - >
NVIDIA Triton: ML inference server ¥ 2
f \ gRPC \ TRITON INFERENCE SERVER

CMS SONIC workflows

Flexible CPU to GPU ratio at Purdue Tier 2 data center launch on demand
server / \
Maximize acceleration with heterogenous resources €T - It S I
results ~ = = — -

Flexible fallback solutions with homogenous client software _ £y WACCESS &=

o

(CUDA & alpaka). SONIC workflow in CMS production system

Recent result presented at CHEP 2023.



https://indico.jlab.org/event/459/contributions/11816/

Analysis Software

Pythonic scientific computing ecosystem

Seamless interface with data science and ML tools

Columnar analysis (Coffea)

everage many many cores!

Investing in facility support at CMS sites (next slide).

ServiceX Networks

Remote data

proot

Reading and writing ‘
ROOT files (just 1/0O) )‘
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Analysis Facilities

Analysis computing presently run on
facilities designed for reconstruction

Investing in analysis facilities at
various USCMS sites

Build infrastructure support for
columnar analysis with modern
softwares

Traditional style workflows can also
run on these facilities, or possible
with new languages, e.g Julia

Quick analysis turn around time
demonstrated: ~1 hour for a Run 2
analysis demonstrated (instead of a
day or more)

User access

Purdue AF website

ClLogon |

Purdue, CERN, FNAL login options

|
Automatic user authorization
(filter out non-CMS CERN users)

Data access / file sharing ! Scaling out
CERN EOS (CERNBox)": FUSE + Kerberos Purdue Analysis Facility kubernetes
S — d ° Dask Gateway (WIP) ‘
. | r’ rn
Purdue EOS*: FUSE mount edicaied Users RUbernetes po Ll EEr
* AlmaLinux8 OS
Purdue Depot*: NFS mount  Persistent user storage (25GB) SLURM (WIP) slu:rm
* JupyterLab interface ROOT —
Dol e RS Gl * Pre-installed kernels / conda envs |
(ROOT, ML packages, coffea, etc.) o PyTorch | Triton inference servers (WIP)
XRootD client > g |:;| pandas
* read/write access
read-only (+write for Purdue users) Shared ServiceX
* read-only access storage T(WIP)
(WIP)

Example: Analysis facility prototype at Purdue



Storage R&D

Object data formats provide novel
data management capabillities

Compared to current tier-based
file model

Reduce disk storage requirements,
obviate the need to define data tiers

Developing a prototype object store

Tier-based scheme Object store scheme
Service MiniAOD Data product KB per event MiniAOD Data product KB per event
Using Ceph S3 protocol vio 2 vi w2
In collaboration with FNAL CSAID packed+pruned genParticles 5.7 57 ~ Packedrprunedgenvarticles 5.7 -
StOrage group slimmedElectrons 1.3 1.3 slimmedEiectrons 13 )
Others 48.7 -

salage=—p 3

/O scales better than ROOT files Others 87 487 o otod simmedElections - 1.

Talk at CHEP 2023



http://www.apple.com

Big data challenges in CMS and beyond

CPU Analyses throughput & timescales
|

"E | | | |
)
> 103
L 107 Param. Est. -
(D) (sampling)
S O
<
S 10 —
O
e
)
O 10-1 DUNE -
O @ Param. Est. SNe
Variable Star HL-LHC Reco
10-3|- Classification Anomaly Detection _
L %MiniAOD
lceCube Data
105 GP Regresosion _
107 | | | | | |
10-4 10" 102 105 108 101 1014
Throughput [events/hr]
Il §e
Offline hr m S

Latency Requirement

Computing challenges present in current
and next generation HEP, astrophysics

experiments and beyond.

White paper: "Applications

of Deep

Learning to physics workflows

CMS members leading deve

general solutions, tools, com
paradigms.

opments In
puting

Shared resources, computing
infrastructure, network challenges


https://arxiv.org/abs/2306.08106
https://arxiv.org/abs/2306.08106

Summary

Upcoming High-Luminosity LHC run present many physics opportunities

Enhanced statistics with 10 times larger dataset, new ideas in looking for BSM
deviations

Computing challenges at the LHC/High-Luminosity LHC (Run 4) starting in 2029
Collider operation conditions, physics needs
Changing computing hardware landscape
Various R&D activities

Big data science era. Shared challenges, tools and solutions that enable new
computing paradigms and opportunities



