Signal Processing with WireCell in SBND Lynn Tung (University of Chicago) and Moon Jung Jung (University of Chicago), on behalf of the SBND Collaboration

The Short Baseline Near Detector (SBND), a 112 ton liquid argon time projection chamber (LArTPC), is the near detector of the Short Baseline Neutrino Program [1]. In a LArTPC, ionization electrons from a charged particle interaction drift along electric field lines, inducing bipolar signals on induction wire planes and a unipolar signal on the collection wire plane. These measured signals must undergo noise filtering, deconvolution, and signal processing to recover the original ionization signal. WireCell, a software package developed for LArTPCs, implements 2D deconvolution (in time and wire dimensions) to correct for the interwire induction field effects inherent to LArTPC signals [2].

Model of the SBND detector [3], howing the positions of the anode plane and cathode plane assemblies (APAs and CPAs). Wires are located on the APAs.

> Layering of wires in SBND. U is the first induction plane, followed by V, and W is the collection plane. Wires are separated by 3 mm in each plane, and induction planes are rotated $\pm 60^{\circ}$ from W.

WireCell Signal Processing (SP) Chain The main steps of SP are 2D deconvolution, high-frequency (HF) filters, low-frequency (LF) filters, and region-of-interest (ROI) finding. ROIs are implemented to limit LF noise and preserve charge extraction [2]. Filter functional shapes also shown in both the time and frequency domain.

	SBND Simulation SBND Work In Progress
Raw Waveform	true charge
	raw wvfm
\downarrow	
20	true charge
Deconvolution	
	apply 2D decon [scaled x0.01]
▼	SBND Simulation SBND Work In Progress
Gaussian Filter	true charge
	apply Gaussian Filter
•	SBND Simulation SBND Work In Progress
Wiener Filter	true charge
	apply HF Wiener Filter
↓	SBND Simulation SBND Work In Progress
LF Filters (+ ROI)	true charge
	apply Low-Frequency Filter(s)
↓ ↓	SBND Simulation SBND Work In Progress
Output Waveform	true charge
	output wvfm

Fermi National Accelerator Laboratory

Raw waveforms include noise, electric field response, electronics response, and signal

2D deco. includes a *wire* filter. which determines the # of neighboring wires to use.

The timing of the signal peaks is clearly resolved in the output waveform.

the optimized 2D deco.

2D Detector Response: Time & Wire Dimensions

The raw digitized TPC signal is a convolution of the arriving ionization electron distribution (time dimension), the field response describing the induced current on wires from moving charge (wire dimension), and the overall electronics response [2].

To optimize the SP chain in SBND, we simulated minimum-ionizing particles in known θ_{x_7} bins to maximize the charge extraction performance (bias, resolution, failure rate). We performed coordinate descent over SP filter (e.g. HF Wiener, LF, wire filters, etc.) values to determine optimum parameters.

$\omega) = \dots + R_1(\omega)S_{i-1}(\omega) + R_0\omega S_i(\omega) + R_1(\omega)S_{i+1}(\omega) + \dots$									
				♦					
(ω)		$\int R_0(\omega)$	$R_1(\omega)$		$R_{n-2}(\omega)$	$R_{n-1}(\omega)$		$\int S_1(\omega)$	
$e(\omega)$		$R_1(\omega)$	$R_0(\omega)$	• • •	$R_{n-3}(\omega)$	$R_{n-2}(\omega)$		$S_2(\omega)$	
:	=	:	÷	۰.	:	÷	•	:	
$-1(\omega)$		$R_{n-2}(\omega)$	$R_{n-3}(\omega)$	•••	$R_0(\omega)$	$R_1(\omega)$		$S_{n-1}(\omega)$	
$_{i}(\omega)$		$R_{n-1}(\omega)$	$R_{n-2}(\omega)$	•••	$R_1(\omega)$	$R_0(\omega)$		$\left(S_n(\omega) \right)$	

Fermilab DIS. DEPARTMENT OF

