

Muon Collider Experiment

Fermilab Accelerator Complex Evolution (ACE) Workshop, 14-15 June 2023

Marco Valente

on behalf of the International Muon Collider Collaboration (IMCC)

Particle Physics department TRIUMF, Canada's particle accelerator centre marco.valente@cern.ch

Introduction

- A Muon Collider could **open an entire new avenue** in particle physics (both precision and high-energy!)
 - It also opens new challenges for accelerators and detectors (muons are unstable!).
- <u>Talk purpose</u>: overview of current detector concept, recent simulated performance and new ideas.
 - More details on physics and acceleration in other talks.
- <u>Caveats:</u>
 - Current detector design far from being optimal (still room for improvement!). But it gives us a lower bound on the achievable performance of a Muon Collider detector.
 - Just a selection of results here! For more details you can refer to arXiv:2201.07895 and arXiv:2203.07964

00

Muon collisions

From collision environment to detector concept

- To define a suitable detector and evaluate its performance, first we need to understand:
 - 1. What is the physics target and the collision \sqrt{s} ?

 $\sqrt{s} = 10$ TeV good benchmark for physics (including first stage @ 3 TeV)

VBF production becomes important (e.g. Higgs production). Need a 4π detector!

00

Muon collisions

From collision environment to detector concept

- To define a suitable detector and evaluate its performance, first we **need to understand**:
 - 1. What is the physics target and the collision \sqrt{s} ?

 $\sqrt{s} = 10$ TeV good benchmark for physics (including first stage @ 3 TeV)

VBF production becomes important (e.g. Higgs production). Need a 4π detector!

Aarco Valente article Physics department RIUMF, Canada's particle accelerat entre

Muon collisions

From collision environment to detector concept

- To define a suitable detector and evaluate its performance, first we need to understand:
 - 1. What is the physics target and the collision \sqrt{s} ?

Muon collisions

From collision environment to detector concept

- To define a suitable detector and evaluate its performance, first we **need to understand**:
 - 1. What is the physics target and the collision \sqrt{s} ?
 - 2. Collision rate f?

Muon collisions

From collision environment to detector concept

- To define a suitable detector and evaluate its performance, first we **need to understand**:
 - 1. What is the physics target and the collision \sqrt{s} ?
 - 2. Collision rate f?

L = 3 kmLHC much larger than this! f = c/L = 30 kHz \times $f \leq 100 \text{ kHz}$ Might need a software-based trigger, but we can do it!

3. How do these collisions look like? Are they clean like e^+e^- ?

Aarco Valente

Valente

Varco

Muon collisions

From collision environment to detector concept

- To define a suitable detector and evaluate its performance, first we **need to understand**:
 - 1. What is the physics target and the collision \sqrt{s} ?
 - 2. Collision rate f?

L = 3 kmLHC much larger than this! f = c/L = 30 kHz \times $f \leq 100 \text{ kHz}$ Might need a software-based trigger, but we can do it! 3. How do these collisions look like? Are they clean like e^+e^- ? $O(10^5)$ muon decays/bunch/meter No! Large noise from Beam Induced 4π detector (decreases with energy!) **Background** (BIB) of muon decays collision beam

A shield for our detector

The nozzles

- We need a standard 4π detector (silicon tracker, calorimeters, muon chambers) with additional shielding for BIB.
 - Adaptation of CLIC detector with tungsten-based nozzles for shielding.

Very effective at mitigating highenergy BIB (> 1 GeV): 3 orders of magnitude reduction

• Current nozzles design optimised for $\sqrt{s} = 1.5$ TeV

Are the nozzles sufficient?

BIB after shielding

- Even with nozzles, **large number of low-energy particles** will enter the detector:
 - Contamination **dominated by low-energy photons** with $\langle E_{\gamma} \rangle \sim 1$ MeV.
 - Especially challenging for innermost components of the detector (i.e. tracker and calorimeters).
 - Our detector needs to be able to **reject these low-energy particles**.
- <u>Radiation doses</u>: in the tracker 1-MeV-neq fluence is 10¹⁴⁻¹⁵cm⁻²y⁻¹ (same ballpark as HL-LHC)

Marco Valente Particle Physics departmen RIUMF, Canada's particle &

Residual BIB features

5D detectors!

- To obtain optimal physics performance we will need to to reject these soft particles.
 - Not only low energy! Residual BIB very out of time and far away from interaction point!

A good detector for the Muon Collider would need excellent energy, time and space resolutions (**5D detectors**!)

6

Aarco Valente article Physics department RIUMF, Canada's particle acc

Can we build a detector that can deal with this environment?

How good would the final reconstruction performance be?

Tracking

From hits to particles

- Tracking certainly the biggest challenge:
 - Large hit occupancy (1000 hits/cm²) implies high data volumes, large combinatorics.
- For 1% hit occupancy goal will need high granularity silicon detector with timing capabilities:
 - Optimal configuration found for pixels of size $25 \times 25 \ \mu m^2$ ($\sigma_t =$ 30 ps), $50 \times 100 \ \mu m^2$ ($\sigma_t = 60 \text{ps}$) and strips of $50 \mu m \times 10 mm$ ($\sigma_t =$ 60 ps).
 - Promising R&D technologies: hybrids, monolitic CMOS, LGADs, and more...

10x more hits than HL-LHC!

Tracking reconstruction

- Recently also benefits from **common tracking libraries** (**ACTS**, <u>arXiv2106.13593</u>) designed for LHC experiments and heavily optimised for efficient computing.
 - Track reconstruction time reduced from several days/event to 4 min/event with Combinatorial Kalman Filter!
 - >95% efficiency achieved for $p_T > 1 \text{ GeV}$ in BIB environment. 100k fakes at low p_T can be largely reduced through quality handles (e.g. track number of hits)
- And this using ACTS without optimization for Muon Collider detector! More to gain!

Aarco Valente article Physics department RIUMF, Canada's particle accele

Valente

Varco

Calorimeters

- BIB particularly affects first layers of calorimeters
- Need calorimeter with:
 - **High granularity** (less overlapping particles in the innermost layers).
 - Good timing resolution (100 ps).

±250 ns window allowed to reject BIB calo hits

- Current design (CLIC):
 - <u>ECAL</u>: $5x5 mm^2$ silicon sensor pads alternated with tungsten plates $(\sigma(E) = 10 \% / \sqrt{E})$
 - <u>HCAL</u>: $30x30 mm^2$ scintillating tiles alternated with steel absorbers $(\sigma(E) = 35 \% / \sqrt{E})$
- **Promising R&D technologies**: multi-readout, Particle Flow (CALICE) and semihomogeneous with SiPMs readout (CRILIN)

- PandoraPFA used to combine calorimeter and tracker information before jet building:
 - PFA outputs passed to **kT algorithm with R=0.5** to build jets.
 - After calibrations and quality selections, jet efficiency found to be above 85%.
 - On average **13 fake jets per event** from BIB are found!

By requiring at least 1 track per jet, fake rate is reduced by two orders of magnitude.

Flavour tagging

arXiv:2303.08533

- B-jet identification very important for physics case (in particular for Higgs physics).
 - B-tagging relies on secondary vertices reconstructed through tracks not associated to the Primary vertex.
- B-tagging efficiency found to be within 50-70% for light-jet mis-tagging rate between 0.1% and 5%

12

/larco Valente article Physics department RIUMF, Canada's particle accⁱ entre

Photons, electrons and muons

Valente

00

Summary and outlook

- Muon colliders are one of the most promising paths to the 10 TeV physics scale.
 - Targeting TDR and readiness to construct in early 2040s.
- BIB is a big (and exciting) challenge!
 - Current detector studies based on CLIC design have shown that it is well possible to mitigate BIB contamination.
 - This will need to rely on clever detector design (nozzles, etc.), cutting edge detector technologies (5D detectors) and modern reconstruction softwares (ACTS, Pandora PFA, etc.).
 - Radiation doses in the same order as HL-LHC!
- Significant detector R&D will be necessary to achieve physics goals, but promising technologies already exist (LGADs, CRILIN, etc.) and synergies with other areas of HEP are well possible!
- A lot already explored, but a lot more to do to reach a fully optimized detector and reconstruction performance (more gains possible!)

Interested to join the detector studies? Check <u>https://muoncollider.web.cern.ch</u> and get in touch!

Inner tracker

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu m \times 25\mu m$	$50\mu m \times 1mm$	$50\mu m \times 10mm$
Sensor Thickness	50µm	$100 \mu m$	$100 \mu m$
Time Resolution	30ps	60ps	60ps
Spatial Resolution	$5\mu m \times 5\mu m$	$7\mu m \times 90\mu m$	$7\mu m \times 90\mu m$

Multiple technological choices being investigated for accurate timing-aware tracking

- Hybrid pixels, CMOS-based, LGAD-based, ...
- Thin sensor (layer)
- Need for powerful yet power-efficient ASICs (smaller feature size)

Synergy with HL-LHC and other projects

		NWOS PMOS NWELL COLLECTION ELECTRODE PWELL NWELL DEEP PWELL LOW DOSE N-TYPE IMPLANT (a) DEPLETED ZONE P EPITAXIAL LAYER P SUESTRATE	AC-pads dielectric n^+ n^{++} (b) JTE gain layer - p^+ Epitaxial layer - p^- substrate - p^{++}
	Hybrid	CMOS-like	LGAD-like
Timing	_	+	+
Spatial Resolution	+	+	_/+
Radiation Hardness	+	_	_

Marco Valente Particle Physics department TRIUMF, Canada's particle accele Centre

Tracker layout

Marco Valente Particle Physics department TRIUMF, Canada's particle accelerator Centre

Double layers tracking

Double layers concept

arXiv:2303.08533

Marco Valente Particle Physics department TRIUMF, Canada's particle accelera Centre

Beam Induced Background (BIB)

Table 3: Multiplicities of different types of particles after the shielding structure, therefore arriving on the detector surface. A single bunch crossing with $2 \cdot 10^{12}$ muons is considered. In all cases, the MAP 1.5 TeV collider design and optimised MDI is assumed.

Monte Carlo simulator	MARS15	MARS15	FLUKA	FLUKA	FLUKA
Beam energy [GeV]	62.5	750	750	1500	5000
μ decay length [m]	$3.9\cdot10^5$	$46.7\cdot 10^5$	$46.7\cdot 10^5$	$93.5\cdot10^5$	$311.7\cdot 10^5$
$\mu \text{ decay/m/bunch}$	$51.3\cdot10^5$	$4.3\cdot 10^5$	$4.3\cdot10^5$	$2.1\cdot 10^5$	$0.64 \cdot 10^{5}$
Photons $(E_{\gamma} > 0.1 \text{ MeV})$	$170\cdot 10^6$	$86\cdot 10^6$	$51\cdot 10^6$	$70\cdot 10^6$	$107\cdot 10^6$
Neutrons $(E_n > 1 \text{ MeV})$	$65\cdot 10^6$	$76\cdot 10^6$	$110\cdot 10^6$	$91\cdot 10^6$	$101\cdot 10^6$
Electrons & positrons ($E_{e^{\pm}} > 0.1$ MeV)	$1.3\cdot 10^6$	$0.75\cdot 10^6$	$0.86\cdot 10^6$	$1.1\cdot 10^6$	$0.92\cdot 10^6$
Charged hadrons $(E_{h^{\pm}} > 0.1 \text{ MeV})$	$0.011\cdot 10^6$	$0.032\cdot 10^6$	$0.017\cdot 10^6$	$0.020\cdot 10^6$	$0.044\cdot 10^6$
Muons ($E_{\mu^{\pm}} > 0.1 \text{ MeV}$)	$0.0012\cdot 10^6$	$0.0015 \cdot 10^{6}$	$0.0031 \cdot 10^{6}$	$0.0033\cdot 10^6$	$0.0048\cdot 10^6$

Radiation and fluency

- For 200 days of operation in 1 year, 1-MeV-neq fluence is expected to be 10^{14-15} cm⁻²y⁻¹ n the region of the tracking detector and of 10^{14} cm⁻²y⁻¹ in the ECAL.
- Total ionising dose in the tracker 10^{-3} Grad/y and 10^{-4} Grad/y in the ECAL.

Calorimeters

 Two approaches: Particle flow and multi-readout (for reduction of statistical fluctuation component) for independent measurement of electromagnetic and hadronic component.

Table 4: Comparison of the hit density in the tracking detector between a MuC with full BIB overlay, the ATLAS ITk and ALICE ITS3 upgrades for HL-LHC. The hit densities for the first and second layers of the vertex detectors are shown. The MCD hit densities are reported after timing cuts.

Detector	Hit Density [mm ⁻²]			
Reference	MCD	ATLAS ITk	ALICE ITS3	
Pixel Layer 0	3.68	0.643	0.85	
Pixel Layer 1	0.51	0.022	0.51	

Marco Valente ²article Physics department FRIUMF, Canada's particle accelerato Centre

Charged particle reconstruction

Fig. 46 Track reconstruction efficiency for events containing a single muon with (red) and without (blue) BIB overlay as a function of the true muon $p_{\rm T}$.

Fig. 48 Track $p_{\rm T}$ distributions for tracks with (blue) and without (red) a match to the true simulated tracks, for single muon events with BIB overlay.

Fraction of tracks 0.35 0.35 0.35 0.35 Muon Collider Simulation w/ truth match w/o truth match 0.2 0.15 0.1 0.05 **0**^L 4 6 8 10 12 14 18 16 Track Hits

√s = 1.5 TeV BIB overlav

Fig. 47 Track reconstruction efficiency for events containing a single muon with (red) and without (blue) BIB overlay as a function of the true muon θ .

Fig. 49 Hit multiplicity $N_{\rm hit}$ distribution for tracks with (blue) and without (red) a match to the true simulated tracks, for single muon events with BIB overlay.

Particle Physics department TRIUMF, Canada's particle ac Centre Marco Valente

Jet reconstruction

- Efficiency pretty much flat in pT
- Drop in the forward region (theta < 0.5) due to requirement of at least 1 track (no tracker in forward region)

24

Particle Physics department TRIUMF, Canada's particle a Centre

Marco Valente

Jet calibration

• Calibration applied by fitting true jet pT vs reco jet pT in different theta bins

