Muon Collider Auxiliary Experiments **Fermilab ACE Science Workshop** June 14, 2023

Illustrations by Stable Diffusion

Cari Cesarotti, MIT CTP

How do we orient the future of particle physics?

How do we orient the future of particle physics?

Invest in ways to maximize physics potential:

How do we orient the future of particle physics?

 Search for robust physics Serve many parts of the community

- Invest in ways to maximize physics potential:

How do we orient the future of particle physics?

Search for robust physics

- Invest in ways to maximize physics potential:
 - Serve many parts of the community

ACE is perfect environment!

With **ACE**, we have the possibility for hosting a completely novel collider at **Fermilab**

FCC

With **ACE**, we have the possibility for hosting a completely novel collider at **Fermilab**

Muon colliders

- Energy frontier Precision Frontier
- Compact

Second gen

FCC

With ACE, we have the possibility for hosting a completely novel collider at Fermilab

Muon colliders

- **Precision Frontier** Energy frontier
- Compact Second gen
- 2-for-1 machine to maximize discovery potential

With **ACE**, we have the possibility for hosting a completely novel collider at **Fermilab**

With ACE, we have the possibility for hosting a completely novel collider at Fermilab

ſ	Parameter	PIU scenarios	MuC-PD scen
ſ	Energy	8 GeV	8-16 GeV
	Rep. rate	10-20 Hz	5-20 Hz
	Avg. beam power	0.3-1.6 MW	1-4 MW
	Proton structure	25-40 e12 over 2 μs ring	40-120 e12 in

With **ACE**, we have the possibility for hosting a completely novel collider at **Fermilab**

To fully utilize ACE, consider auxiliary experiments

With ACE, we have the possibility for hosting a completely novel collider at Fermilab

To fully utilize ACE, consider auxiliary experiments e.g. Beam dumps of protons/muons, at high/low energies, in various materials

Beam dumps are **low-cost** auxiliary experiments with **complementary** reach to main collider

Beam dumps are **low-cost** auxiliary experiments with **complementary** reach to main collider

Synergistic mode to reach **extremely weakly** coupled physics at **moderate** energies

New physics can be studied at low energy because of high beam intensity

PIP-II 10 kW 10²⁰ protons/year

Protons on Target @ 8 GeV ACE-BR 130 kW 10²¹ protons/year

New physics can be studied at low energy because of high beam intensity

Protons on Target @ 8 GeV PIP-II 10²⁰ protons/year Charles and a second and the second

ACE-BR 130 kW 10²¹ protons/year

Protons from Booster

100%

High-Z Target

Protons from Booster

100%

High-Z Target

HADRONS

Protons from Booster

100%

High-Z Target

HADRONS

Protons from Booster

100%

High-Z Target

HADRONS

ACE & Muon Collider Beam Dump Examples of Physics Deliverables, in reverse order of MuC Maturity 2050ish 10^{-2} Muon Beam Dump $L_{tar} = 5.0 \text{ m}$ Lead Target $L_{sh} = 10.0 \text{ m}$ 10^{-2} Alipour-Fard .5 TeV Beam 10^{-3} $E_0 = 5000 \text{ GeV}$ $L_{dec} = 100.0 \text{ m}$ $\theta_{max} = 10^{-2}$ 10^{-3} . Homiller, R. Mishra, M. Reece PRL 10^{-4} LHCb (500 fb⁻¹) Belle- 10^{-4} \mathbf{X} AWAKE 50 10^{-5} Ś × Gambhir, ϵ_X 2306. 10^{-5} Ψ 1018 10^{-6} $N_{\mu} = 10^{18}$ 10^{-6} 10^{20} $N_{\mu} = 10^{20}$ 10^{-7} Ś ſ $N_{\mu} = 10^{22}$ 10^{-7} 10^{22} С С 00 10^{-8} SHIP 10^{-8} Dark Photon 5 TeV Beam Dark Photon $10^{-9} \downarrow 10^{-2}$ 10^{-1} 10^{-1} 10^{1} 10^{0} 10 10^{2}

 $m_{Z'}$ [GeV]

ACE & Muon Collider Beam Dump

CC, R. Gambhir, S. Alipour-Fard 2306.XXXX

ACE & Muon Collider Beam Dump

Demonstrator Facility Era - PIP-II + ACE MI

Gambhir, S. Alipour-Fard 2306.XXXX Ľ. CC,

Demonstrator Facility Era - PIP-II + ACE MI **Demonstrator Low Energy**

No Muon Cooling

Proton Beam Dump?

After LINAC? At 8 GeV?

Pion Bremsstrahlung?

D. Curtin, Y. Kahn, R. Nguyen

μ at 200 MeV Beam Dump?

WiP w/ M. Furslond & P. Meade

Conclusions

There are synergies to be done with ACE

We **don't need to wait** for a full MuC to start probing new physics

Progress to be made with beam dump experiments