

Neutrino Factories

A. Bross

Fermilab Accelerator Complex Evolution (ACE) Science Workshop June 14th, 2023

This talk will (mostly) be a review of the history of the NF

Live, Die, Repeat?

- The neutrino factory concept has been around for ~ 50 years
- It has had ups and downs
 - And numerous design studies (8+)
- In its last life (MAP), the physics potential, facility design, and the technological underpinnings were developed in detail.
- Then it stopped
 - But no blue goo

Is it back? Should it be? Do we remember? "Those who cannot remember the past are condemned to repeat it."

NF Design circa 2007 (International Design Study for a NF)

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$	
$\overline{ u}_\mu o ar{ u}_\mu$	$ u_{\mu} ightarrow u_{\mu}$	disappearance
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)
$\overline{ u}_{\mu} ightarrow ar{ u}_{ au}$	$ u_{\mu} ightarrow u_{ au}$	appearance (atm. oscillation)
$\nu_e ightarrow \nu_e$	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	disappearance
$ u_e \rightarrow \nu_\mu $	$\bar{\nu}_e \to \bar{\nu}_\mu$	appearance: "golden" channel
$\nu_e ightarrow u_ au$	$\bar{\nu}_e \to \bar{\nu}_\tau$	appearance: "silver" channel

- High power: Up to 4 MW
- Simultaneously feed two detectors at different baselines
 - 4000 & 7500 km baselines
 - 100kt MIND detectors
 - Very aggressive near detectors

"Golden" \rightarrow Sign of μ observed in detector opposite to that stored in decay ring $\mu^+ \rightarrow \nu_e \Rightarrow \nu_{\mu} n \rightarrow \mu^- p$ (Magnetic detector)

NF physics reach

- Much of the original physics motivation for the NF is gone
- After θ₁₃ was measured, designed changed (lower E, single BL)
 - International Design Study → Muon Accelerator Program
- Is there strong motivation for a NF now?
 - André just provided one
 - But in particular, if there is need to go to very high energy (10s of GeV) v beams, the NF is the way to go
 - Why is the NF superior/unique here?

The only facility that could reach the very small values of $sin^2\theta_{13}$ that was "motivated" at the time

NF and a Muon accelerator facility

- The figure to the right is from the MC study in the late 1990s
 - The NF was also shown as an option
- Below: From the output of the Muon Accelerator Program (MAP) ~2015

Entry level NF: nuSTORM and iMCC demonstrator

- Probes the SBL, large $\delta m^2 \, v\text{-oscillation}$ regime with excellent reach
- Provides a beam for precision $\boldsymbol{\nu}$ interaction physics
 - \leq 1% systematic uncertainty on beam
- Accelerator & Detector technology test bed
 - Live: nuSTORM_v1:
 - David Neuffer (1980) [noninteracting v (Maurons) search] (1982 Die)
 - Live: nuSTORM_v2:
 - At Fermilab (Die 2013)
 - Live: nuSTORM_v3: At CERN

nuSTORM physics reach

- Using the appearance of a wrong-sign muon (magnetized detector: MIND) nuSTORM (5 years @ 120kW on target) excluded at 10 σ the SBL anomaly.
 - Small sensitivity to underlying systematics (1% → 5%)
- v interaction physics limited by detector(s)

"How can you show 10σ contours when you don't know what you don't know." Actual quote from a colleague

And: "It ain't over 'til it's over"

International Muon Collider Collaboration Demonstrator

- A cooling demonstrator is part of the iMCC study and Daniel described.
 - Later-stage cooling
- Layout study at CERN has been completed
 - Can incorporate a nuSTORM and/or ENUBET neutrino source
 - The same target complex would be used profiting from its shielding and general target systems infrastructure, utilities, and accesses.
 - The double deflection of the beamline could reduce radiation streaming towards the nuSTORM ring.
 - Synergies between experiments would reduce costs on both sides.

🛟 Fermilab

Conclusions

- The idea of producing a ν beam from a stored muon beam has been around a long time.
- MAP produced a NF design that was well beyond the "conceptual" stage.
 - The International Design Study did also.
- The physics landscape has changed and motivation for a NF is not strong at the moment.
- With the renewed interest in the Muon Collider, the NF again presents itself as an interim step or secondary program.
 - If a physics case can be made & gain community support. The μ storage ring for a NF is costly.
- The need for a Cooling Demonstrator Facility (CDF) as part of a Muon Collider R&D program might breathe new life into the nuSTORM concept (or extension of).
 - nuSTORM @CERN has generated some interest
 - Preliminary engineering is complete.
 - nuSTORM @Fermilab would benefit from ACE, the original siting plan is still valid and would accommodate the full program need at the CDF.

Thank you

