Fermilab ACE (Accelerator Complex Evolution) Science Workshop June 14-15 2023

Lepton Flavor Violation — theory

Vincenzo Cirigliano University of Washington

Outline

- Introduction: Lepton Flavor Violation & BSM physics
- LFV probes across energy scales
 - Reach in mass scale
 - Model-diagnosing power
- Conclusion and outlook key opportunities in muon physics

Vast literature — apologies in advance for incomplete referencing. Snowmass white papers are a great resource.

- v oscillations $\Rightarrow L_{e,\mu,\tau}$ not conserved
- In SM + massive v, Charged-LFV decays suppressed to unobservable level

 Observation of CLFV processes would unambiguously indicate BSM physics, related to the origin of leptonic 'flavor' & possibly neutrino mass

• Sensitivity to broad spectrum of new physics: both heavy and light + weakly coupled

I/Coupling

• Sensitivity to broad spectrum of new physics: both heavy and light + weakly coupled

• Sensitivity to broad spectrum of new physics: both heavy and light + weakly coupled

• Sensitivity to broad spectrum of new physics: both heavy and light + weakly coupled

We can probe LFV dynamics through a combination of low-energy and collider searches

Decays of μ, τ (and mesons)

(K $\rightarrow \pi \mu e; \quad B \rightarrow K \mu \tau, K \mu e; \quad B_s \rightarrow \mu \tau, \mu e, \text{ quarkonia}, ... \text{ not discussed in detail in this talk})$ $\mu \rightarrow e \gamma, \quad \mu \rightarrow e \bar{e} e, \quad \mu (A, Z) \rightarrow e (A, Z) \qquad M_{\mu} - \overline{M}_{\mu} \qquad \mu \rightarrow e a$ $\tau \rightarrow \ell \gamma, \quad \tau \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} \ell_{\beta}, \quad \tau \rightarrow \ell Y \qquad Y = P, S, V, P \bar{P}, ...$

• Decays of μ , τ (and mesons)

• Decays of μ , τ (and mesons)

Decays of μ, τ (and mesons)

(K $\rightarrow \pi \mu e; \quad B \rightarrow K \mu \tau, K \mu e; \quad B_s \rightarrow \mu \tau, \mu e, \text{ quarkonia}, ... \text{ not discussed in detail in this talk})$ $\mu \rightarrow e \gamma, \quad \mu \rightarrow e \bar{e} e, \quad \mu (A, Z) \rightarrow e (A, Z) \qquad M_{\mu} - \overline{M}_{\mu} \qquad \mu \rightarrow e a$ $\tau \rightarrow \ell \gamma, \quad \tau \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} \ell_{\beta}, \quad \tau \rightarrow \ell Y \qquad Y = P, S, V, P \bar{P}, ...$

Collider processes:

LHC
$$\begin{pmatrix} p p \to R \to \ell_{\alpha} \bar{\ell}_{\beta} + X & R = Z h, \tilde{\nu}, \dots \\ p p \to \ell_{\alpha} \bar{\ell}_{\beta} + X & \end{pmatrix}$$

HERA, EIC

$$e p \rightarrow \ell + X$$

Connecting scales with EFT

Connecting scales with EFT

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

→ multiple CLFV measurements needed to extract the underlying physics

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

→ multiple CLFV measurements needed to extract the underlying physics

• New physics mass scale through any process

 $BR_{\alpha \rightarrow \beta} \sim (v_{ew}/\Lambda)^4 * |(C_n)^{\alpha \beta}|^2$

μ-e sector:	Λ/√C ~ 10⁴-5 TeV	(Muon decays)
τ-μ(e) sector:	Λ/√C ~ 10² TeV	(Tau decays)

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

→ multiple CLFV measurements needed to extract the underlying physics

New physics mass scale through any process

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

→ multiple CLFV measurements needed to extract the underlying physics

- New physics mass scale through any process
- Relative strength of operators ($[C_D]^{e\mu}vs [C_S]^{e\mu}...$) through $\mu \rightarrow 3e$ versus $\mu \rightarrow e \gamma$ versus $\mu \rightarrow e \gamma$ conversion \Rightarrow Mediators, mechanism

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

→ multiple CLFV measurements needed to extract the underlying physics

- New physics mass scale through any process
- Relative strength of operators ($[C_D]^{e\mu}vs [C_S]^{e\mu}...$) through $\mu \rightarrow 3e$ versus $\mu \rightarrow e\gamma$ versus $\mu \rightarrow e$ conversion \Rightarrow Mediators, mechanism
- Flavor structure of couplings ($[C_D]^{e\mu}$ vs $[C_D]^{\tau\mu}...$) through $\mu \rightarrow e$ versus $\tau \rightarrow \mu$ versus $\tau \rightarrow e \Rightarrow$ Sources of flavor breaking

μ-e sector: mass reach

• Sensitivity is dominated by low-energy muon decay / conversion

μ -e sector: diagnosing tools (1)

• Extract info on effective couplings from pattern of BRs: $\mu \rightarrow e \ vs \ \mu \rightarrow e \gamma$

- Pattern controlled by
 - Behavior of overlap integrals
 - Total capture rate

Kitano-Koike-Okada hep-ph/0203110, VC-Kitano-Okada-Tuzon 0904.0957, ...

μ -e sector: diagnosing tools (2)

• Extract info on effective couplings from pattern of BRs: target-dependence of $\mu \rightarrow e$ conversion

- Model diagnosing requires:
- ~5% measurement of Ti/Al ~20% measurement of Au/Al
- Ideal world: use Al and a large-Z target

Kitano-Koike-Okada hep-ph/0203110, VC-Kitano-Okada-Tuzon 0904.0957, ...

μ -e sector: diagnosing tools (2)

- Extract info on effective couplings from pattern of BRs: target-dependence of $\mu \rightarrow e$ conversion
- Conversion rate characterized by a target-dependent 'vector' of amplitudes

$$R_{\mu e} = \frac{32G_F^2}{\Gamma_{\text{capture}}} \left[|\vec{v} \cdot \vec{C}_L|^2 + |\vec{v} \cdot \vec{C}_R|^2 \right] \qquad \vec{v} \equiv \left(\frac{D}{4}, V^{(p)}, S^{(p)}, V^{(n)}, S^{(n)} \right)$$

• Misalignment angle among targets quantifies the 'complementarity'

$$heta_{\mathrm{Al}} = \arccos\left(rac{ec{v}\cdotec{v}_{\mathrm{Al}}}{|ec{v}||ec{v}_{\mathrm{Al}}|}
ight)$$

 Among low-Z target, ⁷Li and ⁵¹V stand out (large nat. abundance)

μ -e sector: diagnosing tools (3)

(See also Crivellin et al. 1404.7134)

μ -e sector: diagnosing tools (3)

(See also Crivellin et al. 1404.7134)

** Included NLO chiral EFT corrections in computation of conversion rate.

For NR nuclear EFT approach see Rule et al, 2109.13503

μ -e sector: diagnosing tools (3)

• Muon decays provide clean probe of LFV Higgs couplings

τ -e(μ) sector: mass reach (1)

 Bounds dominated by τ decays, with few exceptions from Higgs decay, LFV Drell-Yan, and B decays

(Similar pattern for τ - μ , without EIC)

T-e(μ) sector: mass reach (2)

 Bounds dominated by τ decays, with few exceptions from Higgs decay, LFV Drell-Yan, and B decays

White paper 2203.14919

(Similar pattern for τ - μ , without EIC)

τ - $\mu(e)$ sector: diagnosing tools

Pattern of BRs and differential distributions. Illustration via Higgs-mediated LFV

- Given BR($h \rightarrow \mu \tau$) < 0.15%, $\tau \rightarrow \mu \pi \pi$ is observable at Belle-II if Y_{u.d,s} ~ Y_b
- Higgs-specific combination of D, S, G → unique signature in m spectrum

Celis-VC-Passemar 1309.3564

Probing the flavor-breaking pattern: μ vs τ

- Smaller samples of taus compared to muons \Rightarrow BR_{τ} ~10⁻⁸ while BR_{μ} ~10⁻¹³
- Well motivated flavor-breaking patterns (leptonic MFV, GUTs, U(2) symmetries, ...) suppress $\mu \rightarrow e$ compared to $\tau \rightarrow \mu$:

Leptonic MFV**:	BR($\mu \rightarrow e\gamma$) / BR($\tau \rightarrow \mu\gamma$) ~ s ₁₃ ² ~ 10 ⁻²
GUT models:	$BR(\mu \rightarrow e\gamma) \ / \ BR(\tau \rightarrow \mu\gamma) \ \sim \ V_{us} ^6 \ \sim \ 10^{-4}$

VC-Grinstein-Isidori-Wise, hep-ph/0507001, hep-ph/0608123,...

Barbieri-Hall-Strumia, hep-ph/9501334

Probing the flavor-breaking pattern: μ vs τ

- Smaller samples of taus compared to muons \Rightarrow BR_{τ} ~10⁻⁸ while BR_{μ} ~10⁻¹³
- Well motivated flavor-breaking patterns (leptonic MFV, GUTs, U(2) symmetries, ...) suppress $\mu \rightarrow e$ compared to $\tau \rightarrow \mu$:

Leptonic MFV**:	BR($\mu \rightarrow e\gamma$) / BR($\tau \rightarrow \mu\gamma$) ~ s ₁₃ ² ~ 10 ⁻²
GUT models:	BR($\mu \rightarrow e\gamma$) / BR($\tau \rightarrow \mu\gamma$) ~ $ V_{us} ^6$ ~ 10-4

VC-Grinstein-Isidori-Wise, hep-ph/0507001, hep-ph/0608123,...

Barbieri-Hall-Strumia, hep-ph/9501334

** Explicitly realized in Type-II seesaw (scalar triplet) CLFV controlled by $Y_{\Delta} \propto m_v$

Experimental prospects

• Key facilities for muons: FNAL, J-PARC, PSI

- Next generation muon experiments at FNAL:
 - Mu2e-II, I0x better sensitivity
 - Advanced Muon Facility:
 - PRISM concept: 100x improvement μto-e conversion and high-Z target
 - Muonium-antimuonium, muon EDM,...

 Current / next gen. experiments relevant for CLFV in tau (and mesons)

Conclusions & Outlook

- Charged LFV processes probe a broad spectrum of new physics
 - Discovery tools: clean, very high scale reach
 - Model-diagnosing tools: mediators, sources of flavor breaking
- 'Win-win' situation
 - Should new physics appear (at the LHC or elsewhere) LFV will provide unique input on its symmetry structure
 - Should new physics NOT appear (at the LHC or elsewhere), LFV will be for a while one of the strongest tools to probe the mass scale of new physics

I/Coupling

Conclusions & Outlook

- Charged LFV processes probe a broad spectrum of new physics
 - Discovery tools: clean, very high scale reach
 - Model-diagnosing tools: mediators, sources of flavor breaking

Exciting experimental prospects

- **★** 4-6 (1-2) orders of magnitude improvement in μ (τ) decays
- ★ LHC & EIC will be competitive in τ - μ and τ -e transitions (h → $\tau\mu$, e→ τ)
- Muon processes have unmatched sensitivity in μ-e transitions.
 Great opportunity for the Fermilab muon program