

Mu2e-II

Yuri Oksuzian

Mu2e-II : next generation muon conversion experiment

Transatt.

6/10/23

Yuri Oksuzian

Mu2e-II : next generation muon conversion experiment

behalf of the Mu2e-II working group

PIP-II

27

Nuclear Recoil

1S Orbit Lifetime = 864ns

- Mu2e will search for a neutrino-less $\mu^- N \rightarrow e^- N$ conversion on Al
- Improve the current limit on the conversion rate ($R_{\mu e}$) by **four orders** of magnitude:

$$R_{\mu \to e} = \frac{\Gamma\left(\mu^{-} + N(Z, A) \to e^{-} + N(Z, A)\right)}{\Gamma\left(\mu^{-} + N(Z, A) \to \nu_{\mu} + N(Z - 1, A)\right)} < 6 \times 10^{-17} \text{ (90\% CL)}$$

- Mu2e will produce and stop 7×10^{18} muons on aluminum foils
 - ➤ Searching for ~105 MeV electrons originating from the stopping target
 - , In SM, $\mu^- N \rightarrow e^- N$ is *practically* forbidden ($R_{\mu e} \sim 10^{-54}$)

- What is Mu2e-II?
 - If approved, Mu2e-II will improve $R_{\mu e}$ sensitivity by \times 10 beyond Mu2e limits
 - Refurbish as much of Mu2e infrastructure as possible
 - Upgrade Mu2e components to handle higher beam intensity
- When?
 - Few years after the end of the Mu2e run
 - Expected 5 years of physics run
- Where?
 - Mu2e will utilize a 100kW proton beam from PIP-II at Fermilab

PIP-II status

- PIP-II powers DUNE and experiments like Mu2e-II
 - Project completion this decade
- PIP-II delivers design proton power on the LBNF target
 - with >90% beam allocation for other users

- PIP-II designed to deliver $800 \text{ MeV } H^-$ beam to the Booster
 - Chopper system can produce an arbitrary pattern of filled or empty 162.5 MHz buckets
 - The maximum current $\sim 2mA$
- Mu2e-II will get a beam at upstream end of transfer line to Booster
 - Need to build a beamline to deliver beam to Muon Campus

6/10/23

Beam structure for Mu2e-II (100 kW):

- Injection: intensity is limited to $1.4 \times 10^8 \ H^-$ per bucket
- Booster requires $\sim 3 ms$ out of every 50 ms. The rest to Muon Campus
- Mu2e-II needs a short spill followed by a gap to suppress prompt background
- Mu2e-II needs only 10 buckets in each spill
 - \blacktriangleright beam pulse width is $\sim 62~ns$ much narrower than at Mu2e
- Consider running Mu2e-II at even higher beam intensities

- Mu2e-II is a natural extension of Mu2e
- Feasibility studies started a decade ago at last Snowmass
 - Since then, we submitted several study papers and held multiple workshops
- We submitted 12 LOI on Mu2e-II subsystems for Snowmass 21

- Mu2e-II assumes 5 years of running and 5.5×10^{19} stopped muons
- Maintaining <1 event total background requires detector and beam enhancements
- Higher beam intensity and improved detectors at Mu2e-II yield an order of magnitude sensitivity improvement beyond Mu2e

Results	Mu2e	Mu2e-II $(5-year)$	Required improvement
Backgrounds			
Decay In Orbit	0.144	0.263	Improved tracker resolution
Cosmics	0.209	0.171	Improved veto and enhanced shielding
Radiative Pion Capture	0.025	0.033	Improved extinction $< 10^{-11}$
Radiative Muon Capture	< 0.004	< 0.02	
Antiprotons	0.040	0.000	Beam energy below \overline{p} threshold
Others	< 0.004	< 0.017	
Total	0.41	0.47	
N(muon stops)	6.7×10^{18}	$5.5 imes 10^{19}$	
SES	3.01×10^{-17}	3.25×10^{-18}	
$R_{\mu e}(90\% { m CL})$	6.01×10^{-17}	6.39×10^{-18}	
$R_{\mu e}(\text{discovery})$	1.89×10^{-16}	2.34×10^{-17}	

- Mu2e-II requires the ability to withstand ten times the current beam power
 - The existing Mu2e target and superconducting coils might not be capable of handling this increased power
- Exploring alternative designs, including tungsten Heat Radiation Shields to reduce damage to coils

- Fermilab's LDRD project explores production target concepts resilient to Mu2e-II beam intensities: rotating, granular, and conveyor
- Simulations cover muon yield, thermal stress, radiation damage, residual activation, and radiation loads

- Mu2e-II sensitivity studies considered carbon spheres for conveyor-type production target
 - We have produced an early prototype
- Alternative designs include
 - Fluidized tungsten powder
 - Liquid heavy metal

- Plot below: the number of stopped muons as a function of proton energy for a nominal 3 year run with 100 kW of beam power
 - ▶ The optimal energy is ~2.5 GeV
- The 2 GeV upgrade of PIP-II is of interest to Mu2e-II
 - No pbar background at either 800 MeV or 2 GeV

- Beam targeting differs between Mu2e-II (0.8 GeV) and Mu2e (8 GeV)
 - Affecting beam dump and extinction monitor positions
- To hit the target, Mu2e-II must optimize:
 - Vertical and horizontal angles,
 - Production target location
 - Production Solenoid magnetic field
- 2 GeV beam energy will significantly reduce the challenges above

Tracker

- Mu2e reconstructs conversion electron momentum with the straw tracker
- Expected Decay In Orbit (DIO) background at Mu2e: 0.144 events
 - DIO background would increase 10x at Mu2e-II, proportional to stopped muons
- Plan: enhance momentum resolution by reducing straw thickness: 15 $\mu m \rightarrow 8 \mu m$
 - Additionally, we narrowed the momentum window $1.05~MeV \rightarrow 0.85 MeV$ to further suppress DIO

Tracker

- Thinner straws enhance momentum resolution: $140 \rightarrow 100 \ keV$
- Fermilab's LDRD works on challenges in vacuum tightness, long-term stability, and large-scale production
- Radiation levels (3 Mrad) surpass safe limits for electronics
 - Explore application-specific integrated circuit electronics
- Investigate alternative detectors
 - Light gas vessel to alleviate straw leakage requirements
 - All-wire construction, eliminating straws
 - Wires separated by mylar walls

Calorimeter

- Mu2e utilizes CsI calorimeter for PID, seed tracking, and fast trigger
- Requirements: $\sigma_E/E < 10\%$ @ 100MeV and $\sigma_t < 500 \ ps$ @ 100MeV
- CsI cannot withstand rad doses and occupancies at Mu2e-II: < Mrad, $10^{13} n_{1MeV-eq}/cm^2$
- BaF₂ is a promising candidate with a rad hardness of < 100 Mrad and a fast UV component
 - Challenge: slow scintillation component
 - Suppress the slow component through doping BaF₂ with (Y)ttrium, (La)nthanum and (Ce)rium
 - Develop solar-blind photosensor: SiPMs with an external filter or UV-sensitive photocathodes
- This R&D is currently unfunded

6/10/23

- CRV identifies cosmic ray muons that produce conversion-like backgrounds
- Technology: Four layers of extruded polystyrene scintillator counters with embedded wavelength shifting fibers, read out with SiPM photodetectors
- Expected live-time and hence cosmic ray background is >3x higher at Mu2e-II
 - Use alternative CRV design to enhance the detection efficiency
- Higher (>x3) rad doses: higher DAQ rates, dead-time, rad damage
 - Promising results with enhanced shielding: tungsten PS and boron doped heavy concrete
- Cosmic ray background sources undetectable by CRV:
 - ▶ Cosmic ray neutrons is a significant (~0.6) source, if not addressed with enhanced shielding
 - Muons entering through un-instrumented CRV region is small (<0.1), but challenging to suppress contribution

- Enhanced CRV design using triangular-shaped counters
 - Improved efficiency due to reduced gaps
 - Better (1 mm) positional resolution reduces fake cosmic id, and hence dead-time
 - Lower DAQ rate from beam-induced detector noise
- CRV will be replaced due to aging
 - Enhance the light yield with thicker fiber, improved PDE SiPMs and potting fiber
- A prototype has been designed, fabricated and studies show promising results
- This R&D is currently unfunded

Stopping target

- We have considered stopping target designs alternative to Mu2e
 - However, we found that the current design with 34 AI foils is close to optimal
- If the signal is observed, will change stopping target to probe underlying New Physics operator
 - Titanium (Vanadium) and even Lithium stopping targets will be investigated
- Will adjust the micro-bunch length period to accommodate the muon lifetime of 329 ns on Ti vs 864 ns on Al

FIG. 1: Z dependence of $\mu \rightarrow e$ conversion rates for some example scenarios

CLFV Schedule

- Preliminary Mu2e-II scenario based on Snowmass RPF summary:
 - CD-0 by 2028
 - Construction 2028-2032
 - Data 2033-2037

Summary

- Mu2e-II will advance CLFV with the search in $\mu^- N \rightarrow e^- N$ channel
 - Achieving an order of magnitude improvement in $R_{\mu e}$
- The physics case for Mu2e-II is compelling, independent of the findings from Mu2e
 - If Mu2e observes a signal, Mu2e-II will conduct detailed studies of the underlying physics
 - In the absence of a signal in Mu2e, Mu2e-II will extend the sensitivity reach even further
- Mu2e-II has support from the muon physics community and Fermilab's PAC
- A comprehensive R&D program has been identified for Mu2e-II
 - We can achieve an improvement beyond x10 in sensitivity with additional R&D, higher beam energy, and a production target beyond 100 kW
- Pending approval, Mu2e-II is expected to commence data-taking in the 2030 decade
- Mu2e-II can act as a bridge to AMF
 - Synergistic R&D with Muon Collider on production target and solenoid

Backup slides