

FFA FOR FUTURE MUON CONVERSION EXPERIMENT

Eric Prebys, UC Davis

2

- Reminder: Mu2e Goals (3 years @ 8 kW)
- ~.4 background events

Bottom line:

 Single event sensitivity: 	R _{μe} =3x10 ⁻¹⁷
 90% C.L. (if no signal) : 	R _{μe} <7x10 ⁻¹⁷
 Typical SUSY Signal: 	~40 events or more

Four order of magnitude improvement over previous best experiment (SINDRUM-II)

After Mu2e

- Mu2e doesn't see signal?
 - Keep searching at higher sensitivity
 - Going to higher-Z targets will enhance conversion probability
- Mu2e sees signal?
 - More running to increase precision and study nature of signal.
 - Most important: dependence on the capture target!
- Common
 - More beam
 - Higher-Z targets

Potential Future Plans

- Mu2e-II
 - Redo the Mu2e experiment using beam directly from the PIP-II linac (8 GeV -> 800 MeV)
 - 8kW->100 kW
 - ~10 times the statistics
 - Unless the signal from Mu2e is large, we'll still be limited to aluminum or slightly heavier as a target.
 - I'll say very little about this.
- ACE Era
 - Goal: 1 MW at 800-2000 MeV (depending on PIP-II upgrades)
 - Cannot be done directly with PIP-II beam
 - Other significant issues going to higher statistics and heavier targets.
 - Let's talk about those

47 ms. 0.133 ma for mu2e-II

~27770 1.693 µs spills

0.6 ms, 2ma for Booster

3 ms

5

Mu2e-II Beam Formation

- Possible beam structure (100 kW):
 - 10 bunch burst @ 600 kHz
 - 1.4x10⁸ protons/bunch
 - 600 kHz repetition rate
 - = 100 kW
 - 3% duty factor
 - 0.12 mA
 - These numbers are independent from the instantaneous bunch rate!
 - ie, which line we're in
- The bunch rate only affects the pulse width
 - 162.5 MHz = 60 ns
 - 81.25 MHz = 120 ns
 - 40.625 MHz = 240 ns

All of these numbers would double for 200 kW

That's all that would be needed from the accelerator end!

~275 162.5 MHz buckets

50 ms = 29545 1.693 µs spills

8-16 bunches

Target Nucleus Issue (same for Mu2e and Mu2e-II)

- We would like to go to higher Z nuclei either to enhance the rate if we don't see a signal or to study the A-dependence if we do;
- HOWEVER, heavier nuclei *dramatically shorten* the lifetime of the bound muons, which runs into problems with the long beam straggling time
 - Example: The probability of interaction for a gold nucleus would be enhanced by ~1.5-2 relative to aluminum, but the lifetime goes from 880 ns to only 73 ns!

Capture Target Issue

 Our tracking resolution is limited by scattering in our multilayer capture target, which we need because of the muon energy distribution

- To solve these problems we need:
 - 1. A different way for prompt backgrounds to die away
 - i.e. eliminate need for veto
 - 2. A source of muons with much narrower energy distributions.

Solution: FFA*

- This solution has been been developed for next generation of the competing COMET experiment at J-Parc
- Muons will be injected into an FFA for about ~6 turns
 - All the pions will decay away (eliminating the need for the veto)
 - The beam will be phase rotated to reduce the energy spread.

- Ultimately want 500-1000 kW!
- Unfortunately, can't feed this directly from PIP-II...

9

11
fact
πu

PRISM parameters

Parameter	Value	
Target type	solid	
Proton beam power	~1 MW	
Proton beam energy	~ GeV	
Proton bunch duration	~10 ns total	
Pion capture field	10 -20 T	
Momentum acceptance	±20 %	
Reference µ⁻momentum	40-68 MeV/c	Would ideally like to
Harmonic number	1	lower this.
Minimal acceptance (H/V)	$3.8/0.5 \pi$ cm rad or more	Induction linac, maybe?
RF voltage per turn	3-5.5 MV	
RF frequency	3-6 MHz	
Final momentum spread	±2%	
Repetition rate	100 Hz-1 kHz	
	J. Pasternak	

Review: PIP-II Scope Overview

800 MeV H- linac

- Up to 165 MHz bunches
- Up to 2 mA CW
 - Up 1.6 MW

Upgraded Booster

- 20 Hz, 800 MeV injection
- New injection area

Upgraded Recycler & Main Injector

• RF in both rings

Protons for the High Energy Program

- .55 ms injection into Booster at 20 Hz
- Only ~1% of available beam!

Additional beam

- Up to 1.6 MW
- All the beam to one experiment?
- 3-way beam split?

The PIP-II scope enables the accelerator complex to reach 1.2 MW proton beam on LBNF target, *but still leave most of the beam for other users!*

Beam Switching*

*Lia Merminga, CD-2 Refresh

RF Beam Splitting

The Beam will go through an RF deflector running at 162.5/4=40.625 MHz

 Individual beam lines are selected by choosing which bunches to populate.

13

PIP-II Linac Beam Parameters

	Linac	Central	Side		
Parameter	Output	Line	Lines	Comment	
Energy [MeV]					
Max. Ave. Bunch Size		2 mA			
Peak Bunch Size		5 mA			
Bunch Frequency [MHz]	162.5	81.25	40.625	Maximum	
Bunch Separation [ns]	6.2	12.3	24.6	Minimum	

• Note:

- Bunches can be arbitrarily populated, but bunch intensity cannot be changed quickly
- During LBNF running, we will have to live with 1.4x10⁸/bunch, as required by that program
 - 2mA into booster, painted (sparsified) into RF buckets

Need for a Bunch Compressor

- In order to work, an FFA would need*
 - > 10¹² protons/bunch
 - ~ 10 ns bunch length
 - 100-1000 Hz

3000 times too long!

- 10¹² = 5000x(2x10⁸) = 31 μsec⁴
 - For these experiments, we need some sort of "bunch compressor" to accumulate beam into larger bunches, and then extract them to experiments.

• Two Lols were submitted to Snowmass related to this:

- E. Prebys, et al, "Letter of Interest: Bunch Compressor for the PIP-II Linac", (Green field, permanent magnet ring) <u>https://www.snowmass21.org/docs/files/summaries/AF/SNOWMAS</u> <u>S21-AF5_AF0-RF5_RF0_Prebys2-203.pdf</u>
- W. Pellico, *et al*, "FNAL Booster Storage Ring",(this workshop) <u>https://www.snowmass21.org/docs/files/summaries/RF/SNOWMAS</u> <u>S21-RF6_RF0_pellico-029.pdf</u>

Competing Priorities

- The neutrino program
 - The Booster magnets will run at a 20 Hz offset sine wave.
 - Initially, it will be flattened at the lower end during injection using the Booster corrector magnets.
 - Injecting more beam into the booster will require a longer injection pulse, going

beyond the ability of the corrector magnets to flatten the field.

- The Booster Storage Ring (BSR) would allow the protons to be pre-loaded, the way we preload protons in the Recycler for the Main Injector.
- It therefore must be *at least the same circumference* as the Booster!
- Might be other ways to solve this problem.
- Muons (and others?)
 - Want the shortest, most intense pulses we can get.
 - As we will see, this will drive us toward the smallest possible ring circumference.

Filling a Compressor Ring

 H⁻ beam would be injected into the compressor ring over many turns using charge exchange injection.

Injection can be de-phased to lengthen ("paint") bunches in ring (this will turn out to be important)

Modes of Operation

- For Booster pre-loading
 - Fill ring continuously over many turns.
 - Transfer to Booster after accumulating enough protons
 - Still a very small fraction of the total time line.
- For FFA support
 - Continuously fill ring.
 - Time things so that individual bunches can be extracted as they fill up.
 - This would take a bit to explain, so you'll just have to trust me on it.
 - Bottom line: total power out = total beam power in
- Now, to understand beam stability issues...

All the Accelerator Physics U Need 2 Know

• Beam size in a *proton* accelerator is given by

Betatron Tune Ideal orbit

Particle trajectory

- As particles go around a ring, they will undergo a number of betatron oscillations v (sometimes Q) given by
- This is referred to as the "tune"

• We can generally think of the tune in two parts:

Integer : > 6.7 magnet/aperture optimization Fraction:

Tune, Stability, and the Tune Plane

- If the tune is an integer, or low order rational number, then the effect of any imperfection or perturbation will tend be reinforced on subsequent orbits.
- When we add the effects of coupling between the planes, we find this is also true for *combinations* of the tunes from both planes, so in general, we want to avoid

 Many instabilities occur when something perturbs the tune of the beam, or part of the beam, until it falls onto a resonance, thus you will often hear effects characterized by the "tune shift" they produce.

21

Space Charge Tune Shift

Consider the effect off space charge on the transverse distribution of the • beam.

The electric field is repulsive, but the magnetic field is attractive.

The forces exactly cancel at β =1.

-> Space chage effects go down (quickly) with energy.

Space charge tune shift limits the ulletamount of beam that can be loaded into a synchrotron.

Example: SNS

Tune footprint in the SNS proton storage ring after 263, 526, and 1060 injection turns*

Ring Size and Space Charge Considerations

 Once we've fixed the injection energy, for a ring with multiple bunches, the space charge tune shift limit is given by

- Maximize $t_h \rightarrow$ "paint" longitudinally
- Minimize $\tau \to$ This is why we want the smallest ring.
- Maximize $\epsilon_N \rightarrow$ "paint" transversely
 - No longer limited by MI aperture, but not without consequences

Strawman Parameters for Small Compressor Ring

- Circumference = 49.7m
- Number of bunches: 4
- Bunch frequency: 20.31 MHz
- Bunch length: 12.2 ns
- Gap length 36.9 ns
 - A kicker should be able to extract in this gap at ~100Hz
- Note! At this frequency, power is limited to 500 kW by the 2x10⁸ maximum bunch size!

Comparing Small Ring to BSR

• Assume extraction frequency = 100Hz, tune shift Δ_v =.2

	C=50 m			C=500 m (BSR)			
Power [kW]	100	500	1000	100	500	1000	
$N_b \ [10^{12}]$	7.8	39.1	78.1	7.8	39.1	78.1	
$\epsilon_N \ [\pi\text{-mm-mr}]$	27	134	267	267	1340	2670	
radius ($\beta_{\perp} = 20m$) [mm]	18.4	41.2	58.3	58.3	130.4	184.4	
	I				Magnet size and beam transport might be an issue		

- But can we even get to 1MW?
 - Remember: at 20.31 MHz, power is limited to 500 kW by the 2x10⁸ bunch size

Going from 500 kW to 1 MW

• Must go from 20.31 MHz to 40.625 MHz

- Now need a 100 Hz kicker with a < 10 ns full rise and fall time
 - This is very hard
- Might be easier to go to two rings?

Challenges

- Aperture size
 - Magnets
 - Beam transport
- Injection
 - 500-1000 kW charge exchange injection is not trivial
- Extraction kicker
 - > 100 Hz would ease the space charge problem, but begins to get difficult

Summary

- Getting to a 1 MW beam with a pulse structure needed by an FFA is *extremely* challenging.
- The compressor ring needs for CLFV and LBNF are different
 - CLFV wants the smallest ring possible
 - LBNF needs a ring with the same circumference as the Booster
 - Might be another solution, e.g. energy vernier adjustment on PIP-II, a la Linac 4 at CERN?

BACKUP

Outline

- Review: the Mu2e experiment
- After Mu2e
 - Mu2e-II
 - Beyond Mu2e-II (The need for an FFA)
- Review: PIP-II
- Competing needs for a compressor
 - LBNF
 - CLFV
- Compressor parameters
- Challenges

Reminder: the Mu2e Experiment

- Proton beam strikes target, producing mostly pions
- Production Solenoid
 - Contains backwards pions/muons and reflects slow forward pions/muons
- Transport Solenoid
 - Selects low momentum, negative muons
- Capture Target, Detector, and Detector Solenoid
 - Capture muons on target and wait for them to decay
 - Detector blind to ordinary (Michel) decays, with $E \le \frac{1}{2}m_{\mu}c^2$
 - Optimized for E ~ $m_{\mu}c^2$

Decay-in-orbit Spectrum Motivates Detector Specs

32

Beam Requirements

- Most backgrounds are prompt with respect to the arrival of the muons to the capture target
 - The most important are radiative decays due to residual pions!
- The previous best experiment was limited by the need to veto around the arrival of every charged particle.
- Solution: pulsed beam

General: Calculating Beam Rate and Power

Assume we have n_b bunches with N protons in each bunch every T seconds

This will be very important